1 |
OFDM Coupled Compressive Sensing Algorithm for Stepped Frequency Ground Penetrating RadarMetwally, Mohamed 01 January 2014 (has links)
Dating back to as far as 1940, the US road and bridge infrastructure system has garnered quite the status for strategically connecting together half a continent. As monumental as the infrastructure's status, is its rate of deterioration, with the average bridge age coming at a disconcerting 50 years. Aside from visual inspection, a battery of non-destructive tests were developed to conduct structural fault assessment and detect laminations, in order to preemptively take preventive measures.
The mainstream commercially favored test is the impulse time domain ground penetrating radar (GPR). An extremely short, high voltage pulse is used to visualize cross-sections of the bridge decks. While effective and it does not disturb traffic flow, impulse radar suffers from major drawbacks. The drawbacks are namely, its limited dynamic range and high cost of system manufacturing. A less prominent yet highly effective system, stepped frequency continuous wave (SFCW) GPR, was developed to address the aforementioned drawbacks. Mostly developed for research centers and academia, SFCW boasts a high dynamic range and low cost of system manufacturing, while producing comparable if not identical results to the impulse counterpart. However, data procurement speed is an inherent problem in SFCW GPR, which seems to keep impulse radar in the lead for production and development.
I am proposing a novel approach to elevate SFCW's data acquisition speed and its scanning efficiency altogether. This approach combines an encoding method called orthogonal frequency division multiplexing (OFDM) and an emerging paradigm called compressive sensing (CS). In OFDM, a digital data stream, the transmit signal, is encoded on multiple carrier frequencies. These frequencies are combined in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between said frequencies. In CS, a signal can be potentially reconstructed from a few samples below the standardized Nyquist rate. A novel design of the SFCW GPR architecture coupled with the OFDM-CS algorithm is proposed and evaluated using ideal channels and realistically modelled bridge decks.
|
2 |
Flexible monolithic ultra-portable ground penetrating radar using inkjet printing technology / Intégration d'un géoradar ultra-portable en technologie à impression d'encre sur substrat soupleTraille, Anya Nadira-Asanti 25 November 2014 (has links)
Un géoradar (GPR) effectue une détection non destructive d'objets enfouis, ou l'imagerie du sous-sol par transmission d'ondes électromagnétiques et la détection et l'analyse des réflexions. Le principal défi de GPR est la réduction de la portée de détection en raison de l'atténuation du signal grave causée par la conductivité du sous-sol qui devient plus sévère dans les hautes fréquences. Afin d'augmenter la portée de détection, GPR utilise des fréquences plus basses que les radars non-GPR et nécessite donc de plus grandes antennes qui peuvent limiter la portabilité du système. La plupart des systèmes utilisent des radars GPR à impulsion mais le FMCW (onde continue à fréquence modulée) radar peut présenter certains avantages tels que la versatilité de la fréquence, une maintenance réduite du système et une meilleure résolution de gamme. Les fréquences inférieures à 1 GHz ont d'abord été rares en radars de courte portée FMCW mais trouvent maintenant leur chemin de retour dans des systèmes comme ultra-large bande (UWB) pénétrant dans le sol des radars pour la détection des mines et ainsi que d'autres applications. Lorsque les mesures sont effectuées sur des véhicules, de grands appareils d'antenne ne sont pas un problème. La portabilité, cependant, peut devenir un problème dans les études géophysiques ou des travaux d'urgence dans laquelle on peut avoir besoin de transporter le système par des endroits accidentés, inexplorés et / ou dangereux sans accès aux véhicules. Des environnements inaccessibles peuvent nécessiter la manœuvrabilité à travers d’obstacles (montagnes, grottes, lacs, zones rocheuses). D’ailleurs, l’installation rapide du système est critique dans des conditions difficiles telles que les températures extrêmes, où le temps d'exposition est coûteux et le temps de mesure limité. Une solution pour améliorer la portabilité et la capacité de déploiement d'un système GPR est de réaliser un système complet sur un substrat qui est enroulable afin de permettre une transportation facile. L’électronique sur substrat flexible a déjà été utilisée dans des applications militaires et des sports en plein air. Actuellement, il y a quelques technologies disponibles pour réaliser l'électronique flexible qui ont été un thème majeur en recherche, chacune avec différents niveaux d'intégration. La technologie d'impression à jet d'encre offre une méthode efficace, polyvalente et rentable pour la réalisation de dispositifs flexibles. Dans ce travail, un système radar FMCW classique a été conçu et un travail présenté, pour la première fois, d’application de la technologie d'impression à jet d'encre sur un système de radar. Le système est appelé un système de radar monolithique portable dans lequel tous les agents actifs, passifs et l'antenne sont destinés à partager le même substrat enroulable continu. Ainsi, une intégration hybride est utilisée pour étudier la fiabilité et la performance du système complet enroulé autour d’un rayon serré. Plusieurs défis de conception d'un grand système ont été surmontés qui donneront un aperçu de nouveaux modèles au fur et à mesure que le niveau d'intégration à l'aide de la technologie d'impression à jet d'encre continue d’augmenter. / Flexible monolithic ultra-portable ground penetrating radar using inkjet printing technology A Ground Penetrating Radar (GPR) performs nondestructive detection of buried objects, or subsurface imaging by transmitting electromagnetic waves and detecting and analyzing the reflections. The main challenge of GPR is the reduction in detection range due to the severe signal attenuation that is caused by subsurface conductivity that becomes more severe at high frequencies. In order to increase the detection range, GPR uses lower frequencies than non-GPR radars and thus requires larger antennas that may limit system portability. Most GPR systems use impulse radars however the FMCW (frequency modulated continuous wave) radar can provide some advantages such as frequency versatility, reduced system maintenance and improved range resolution. Frequencies below 1 GHz were initially uncommon in short-range FMCW radars but are now finding their way back in systems such as ultra-wideband (UWB) ground penetrating radars for mine detection and as well as other applications. When measurements are performed on vehicles, large antenna fixtures are not a problem. Portability, however, can become an issue in geophysical studies or emergency work in which one may need to transport the system through rugged, unexplored and/or hazardous locations without vehicle access and perform measurements. Inaccessible environments may require climbing up and down, squeezing through, jumping over, crawling under, maneuvering through or swimming through obstacles (mountains, caves, lakes, rocky areas). In addition to transportation, rapid system setup is critical in difficult conditions such as freezing temperatures or extreme heat where exposure time is costly and limits measurement time. One solution to enhance the portability and deployability of a GPR system for wide area rugged measurements is to realize a complete system on a continuous substrate that is rollable around a reasonably small radius and storable in a scroll or poster-like fashion for easy backpack transportation. Electronics that can flex and bend have already used in military applications and for outdoor sporting gear. Currently, there are a few types of technology available to realize flexible electronics that have been a major topic of research, each with different levels of integration. Inkjet printing technology offers a cost effective, versatile and efficient method for realizing flexible devices. In this work a classical FMCW radar system is designed and an effort is made, for the first time, to apply inkjet printing technology to a radar system. The system is referred to as a portable monolithic radar system in which all actives, passives and antenna are meant to share the same continuous rollable substrate. In doing this, a medium level of integration is used to investigate limits of system complexity, resolution and ultra miniaturization for tight rollability. Various design challenges of a large system are overcome that will hopefully give insight to new designs as the integration level using inkjet printing technology increases.
|
Page generated in 0.0175 seconds