• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feasibility of Spectrum Sharing Between Airborne Weather Radar and Wireless Local Area Networks

Zarookian, Ruffy 12 December 2007 (has links)
Emerging technologies such as wireless local area networks and cellular telephones have dramatically increased the use of wireless communications services within the last 10 years. The shortage of available spectrum exists due to increasing demand for wireless services and current spectrum allocation regulations. To alleviate this shortage, Research aims to improve spectral efficiency and to allow spectrum sharing between separately managed and non-coordinating communications systems. This thesis explores the feasibility of spectrum sharing between airborne weather radar and wireless local area networks at 9.3 GHz – 9.5 GHz. Characteristics of flight paths of aircraft using airborne weather radar and the low duty cycle of radar transmissions offer unique opportunities for spectrum sharing. But it was found that the extremely sensitive receivers provide challenges for designing a communications system meant for widespread use. The probability of causing harmful interference to airborne weather radar is too great for most types of wireless local area networks, but a direct sequence spread spectrum scheme could share spectrum with airborne weather radar. Bit errors in wireless local area network links caused by airborne weather radar interference do not significantly decrease the performance of the wireless local area network system. The distribution of interference outside of the airborne weather radar receiver by using direct sequence spread spectrum combined with the acceptable bit error rates indicate that while spectrum sharing between airborne weather radar and wireless local area network at 9.3 GHz – 9.5 GHz is not feasible, direct sequence spread spectrum systems can share spectrum with airborne weather radars under more limited assumptions. / Master of Science

Page generated in 0.0456 seconds