21 |
A Real-Time Classification approach of a Human Brain-Computer Interface based on Movement Related ElectroencephalogramMileros, Martin D. January 2004 (has links)
A Real-Time Brain-Computer Interface is a technical system classifying increased or decreased brain activity in Real-Time between different body movements, actions performed by a person. Focus in this thesis will be on testing algorithms and settings, finding the initial time interval and how increased activity in the brain can be distinguished and satisfyingly classified. The objective is letting the system give an output somewhere within 250ms of a thought of an action, which will be faster than a persons reaction time. Algorithms in the preprocessing were Blind Signal Separation and the Fast Fourier Transform. With different frequency and time interval settings the algorithms were tested on an offline Electroencephalographic data file based on the "Ten Twenty" Electrode Application System, classified using an Artificial Neural Network. A satisfying time interval could be found between 125-250ms, but more research is needed to investigate that specific interval. A reduction in frequency resulted in a lack of samples in the sample window preventing the algorithms from working properly. A high frequency is therefore proposed to help keeping the sample window small in the time domain. Blind Signal Separation together with the Fast Fourier Transform had problems finding appropriate correlation using the Ten-Twenty Electrode Application System. Electrodes should be placed more selectively at the parietal lobe, in case of requiring motor responses.
|
22 |
Modelagem tensorial e processamento de sinais por sistemas de comunicaÃÃes de redes / Tensor modeling and signal processing for wireless communication systemsAndrà Lima FÃrrer de Almeida 02 November 2007 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Em diversas aplicaÃÃes do processamento de sinais em sistemas de comunicaÃÃo sem-fio, o sinal recebido à de natureza multidimensional, possuindo uma estrutura algÃbrica multilinear. Neste contexto, a decomposiÃÃo tensorial PARAFAC tem sido utilizada em vÃrios trabalhos ao longo dos Ãltimos seis anos. Observa-se, entretanto, que decomposiÃÃes tensoriais generalizadas sÃo necessÃrias para modelar uma classe mais ampla de sistemas de comunicaÃÃo, caracterizada pela presenÃa de estruturas de transmissÃo mais complexas, por modelos de canal mais realistas, e por tÃcnicas de processamento de sinais mais eficientes no receptor. Esta tese investiga novas abordagens tensorias e suas aplicaÃÃes em modelagem de sistemas MIMO, equalizaÃÃo, separaÃÃo de sinais e estimaÃÃo paramÃtrica de canal. Inicialmente, duas novas decomposiÃÃes tensoriais (PARAFAC em blocos com
restriÃÃes e CONFAC) sÃo desenvolvidas e estudadas em termos de identificabilidade. Em uma segunda parte do trabalho, novas aplicaÃÃes destas decomposiÃÃes tensoriais sÃo propostas. A decomposiÃÃo PARAFAC em blocos com restriÃÃes à aplicada, primeiramente, Âa modelagem unificada de sistemassuperamostrados, DS-CDMA e OFDM, com aplicaÃÃo em equalizaÃÃo multiusuÃria. Em seguida, esta decomposiÃÃo à utilizada na modelagem de sistemas de transmissÃo MIMO com espalhamento espaÃo-temporal e detecÃÃo conjunta. Em seguida, a decomposiÃÃo CONFAC à explorada na concepÃÃo de uma nova arquitetura generalizada de transmissÃo MIMO/CDMA que combina diversidade e multiplexagem. As propriedades de unicidade desta decomposiÃÃo permitem o uso do processamento nÃo-supervisionado no receptor, visando a reconstruÃÃo dos sinais transmitidos e a estimaÃÃo do canal. Na terceira e Ãltima parte deste trabalho, explora-se a decomposiÃÃo PARAFAC no contexto de duas aplicaÃÃes diferentes. Na primeira, uma nova estrutura de transmissÃo espaÃo-temporal-freqÃencial à proposta para sistemas MIMO multiportadora. A segunda aplicaÃÃo consiste em um novo estimador paramÃtrico para canais multipercursos. / In several signal processing applications for wireless communications, the received signal is multidimensional in nature and may exhibit a multilinear algebraic structure. In this context, the PARAFAC tensor decomposition has been the subject of several works in the past six years. However, generalized tensor decompositions are necessary for covering a wider class of wireless communication systems
with more complex transmission structures, more realistic channel models and more efficient receiver signal processing. This thesis investigates tensor modeling
approaches for multiple-antenna systems, channel equalization, signal separation and parametric channel estimation. New tensor decompositions, namely, the block-constrained PARAFAC and CONFAC decompositions, are developed and studied in terms of identifiability. First, the block-constrained PARAFAC decomposition is applied for a uniÂed tensor modeling of oversampled, DS-CDMA and OFDM
systems with application to blind multiuser equalization. This decomposition is also used for modeling multiple-antenna (MIMO) transmission systems with block space-time spreading and blind detection, which generalizes previous tensor-based MIMO transmission models. The CONFAC decomposition is then exploited for designing new MIMO-CDMA transmission schemes combining spatial diversity and multiplexing. Blind symbol/code/channel recovery is discussed from the uniqueness properties of this decomposition. This thesis also studies new applications
of third-order PARAFAC decomposition. A new space-time-frequency spreading system is proposed for multicarrier multiple-access systems, where this decomposition is used as a joint spreading and multiplexing tool at the transmitter using tridimensional spreading code with trilinear structure. Finally, we present a PARAFAC modeling approach for the parametric estimation of SIMO and MIMO multipath wireless channels with time-varying structure.
|
Page generated in 0.0264 seconds