• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGN AND IMPLEMENTATION OF THE INSTRUCTION SET ARCHITECTURE FOR DATA LARS

Ponnala, Kalyan 01 January 2010 (has links)
The ideal memory system assumed by most programmers is one which has high capacity, yet allows any word to be accessed instantaneously. To make the hardware approximate this performance, an increasingly complex memory hierarchy, using caches and techniques like automatic prefetch, has evolved. However, as the gap between processor and memory speeds continues to widen, these programmer-visible mechanisms are becoming inadequate. Part of the recent increase in processor performance has been due to the introduction of programmer/compiler-visible SWAR (SIMD Within A Register) parallel processing on increasingly wide DATA LARs (Line Associative Registers) as a way to both improve data access speed and increase efficiency of SWAR processing. Although the base concept of DATA LARs predates this thesis, this thesis presents the first instruction set architecture specification complete enough to allow construction of a detailed prototype hardware design. This design was implemented and tested using a hardware simulator.
2

LINE ASSOCIATIVE REGISTERS

Melarkode, Krishna 01 January 2004 (has links)
As technological advances have improved processor speed, main memory speed has lagged behind. Even with advanced RAM technologies, it has not been possible to close the gap in speeds. Ideally, a CPU can deliver good performance when the right data is made available to it at the right time. Caches and Registers solved the problem to an extent. This thesis takes the approach of trying to create a new memory access model that is more efficient and simple instead of using various add on mechanisms to mask high memory latency. The Line Associative Registers have the functionality of a cache, scalar registers and vector registers built into them. This new model qualitatively changes how the processor accesses memory.

Page generated in 0.0586 seconds