1 |
The cell cycle of the hyperthermophilic archaeal genus <i>Sulfolobus</i>Hjort, Karin January 2002 (has links)
<p>The third domain of life, Archaea is one of the three main evolutionary lineages together with the Bacteria and the Eukarya domains. The archaea are, despite their prokaryotic cell organisation, more closely related to eukaryotes than to bacteria in terms of the informational pathways (DNA replication, transcription and translation). Organisms from the archaeal hyperthermophilic genus <i>Sulfolobus</i> thrives in a hot (80°C), acidic (pH 2-4) and sulphur-rich environment.</p><p>In my thesis, I have used a variety of different approaches to study the <i>Sulfolobus</i> cell cycle. After dilution of a stationary phase cell culture with fresh medium, synchronous cell cycle progression was obtained. From the synchronised cell culture experiment we could conclude that the major cell cycle events (nucleoid segregation, cell division and chromosome replication) were tightly coupled to each other and to cellular mass increase. </p><p>Inhibitors of the elongation stage of chromosome replication, and of cell division, as well as drugs arresting the cell cycle in the post-replicative phase, were found in an in vivo screening of a range of antibiotics. The cell cycle was found to be regulated such that the previous cell cycle step had to be successfully accomplished before the next could initiate, except for DNA replication which could occur without an intervening cell division event.</p><p>The replication pattern of <i>Sulfolobus solfataricus</i> was analysed using a marker frequency assay. From the results, we were able to determine that a single origin is utilized in vivo, that the replication directionality is bidirectional, and also an approximate location of the replication origin within the genome.</p><p>Intracellular virus production in vivo of SIRV2 (<i>Sulfolobus islandicus</i> rod-shaped virus2) in <i>Sulfolobus islandicus</i> was also analysed. The effects on the host cell were determined, including loss of cell viability, inhibited initiation of replication at virus infection and DNA degradation and loss of cell integrity at the time of virus release. Also, for the first time intracellular virus DNA was visualized with flow cytometry.</p>
|
2 |
The cell cycle of the hyperthermophilic archaeal genus SulfolobusHjort, Karin January 2002 (has links)
The third domain of life, Archaea is one of the three main evolutionary lineages together with the Bacteria and the Eukarya domains. The archaea are, despite their prokaryotic cell organisation, more closely related to eukaryotes than to bacteria in terms of the informational pathways (DNA replication, transcription and translation). Organisms from the archaeal hyperthermophilic genus Sulfolobus thrives in a hot (80°C), acidic (pH 2-4) and sulphur-rich environment. In my thesis, I have used a variety of different approaches to study the Sulfolobus cell cycle. After dilution of a stationary phase cell culture with fresh medium, synchronous cell cycle progression was obtained. From the synchronised cell culture experiment we could conclude that the major cell cycle events (nucleoid segregation, cell division and chromosome replication) were tightly coupled to each other and to cellular mass increase. Inhibitors of the elongation stage of chromosome replication, and of cell division, as well as drugs arresting the cell cycle in the post-replicative phase, were found in an in vivo screening of a range of antibiotics. The cell cycle was found to be regulated such that the previous cell cycle step had to be successfully accomplished before the next could initiate, except for DNA replication which could occur without an intervening cell division event. The replication pattern of Sulfolobus solfataricus was analysed using a marker frequency assay. From the results, we were able to determine that a single origin is utilized in vivo, that the replication directionality is bidirectional, and also an approximate location of the replication origin within the genome. Intracellular virus production in vivo of SIRV2 (Sulfolobus islandicus rod-shaped virus2) in Sulfolobus islandicus was also analysed. The effects on the host cell were determined, including loss of cell viability, inhibited initiation of replication at virus infection and DNA degradation and loss of cell integrity at the time of virus release. Also, for the first time intracellular virus DNA was visualized with flow cytometry.
|
3 |
Unique Solutions to Universal Problems : Studies of the Archaeal CellPelve, Erik A. January 2012 (has links)
Archaea is one of the three domains of life and studies of archaeal biology are important for understanding of life in extreme environments, fundamental biogeochemical processes, the origin of life, the eukaryotic cell and their own, unique biology. This thesis presents four studies of the archaeal cell, using the extremophilic Sulfolobus and ocean living Nitrosopumilus as model systems. Cell division in crenarchaea is shown to be carried out by a previously unknown system named Cdv (cell division). The system shares homology with the eukaryotic ESCRT-III system which is used for membrane reorganization during vesicle formation, viral release and cytokinesis. Organisms of the phylum Thaumarchaeota also use the Cdv system, despite also carrying genes for the euryarchaeal and bacterial cell division system FtsZ. The thaumarchaeal cell cycle is demonstrated to be dominated by the prereplicative and replicative stage, in contrasts to the crenarchaeal cell cycle where the cell at the majority of the time resides in the postreplicative stage. The replication rate is remarkably low and closer to what is measured for eukaryotes than other archaea. The gene organization of Sulfolobus is significantly associated with the three origins of replication. The surrounding regions are dense with genes of high importance for the organisms such as highly transcribed genes, genes with known function in fundamental cellular processes and conserved archaeal genes. The overall gene density is elevated and transposons are underrepresented. The archaeal virus SIRV2 displays a lytic life style where the host cell at the final stage of infection is disrupted for release of new virus particles. The remarkable pyramid-like structure VAP (virus associated pyramids), that is formed independently of the virus particle, is used for cell lysis. The research presented in this thesis describes unique features of the archaeal cell and influences our understanding of the entire tree of life.
|
Page generated in 0.0197 seconds