• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitrogen in SL/RN direct reduced iron : origin and effect on the electric steelmaking process

Erwee, M.W. (Markus Wouter) January 2013 (has links)
Direct Reduced Iron (DRI) is used as an alternative feedstock in electric arc furnaces, making up 50% or more of the total iron charge. DRI produced with coal based reductants (for example in rotary kilns) make up roughly 25% of DRI produced in the world. It was found that SL/RN DRI samples from a kiln cooler had high nitrogen contents (50-250ppm, depending on particle size), higher than DRI from gas-based reduction. The higher nitrogen content of SL/RN DRI would increase the levels of nitrogen of liquid steel produced in the EAFs. The problem is exacerbated by the fact that the SL/RN DRI contains virtually no carbon (which would aid in preventing nitrogen pickup). The proposed mechanism of nitrogen pick-up by the SL/RN DRI is one where nitrogen present within the atmosphere of the rotary cooler (where hot DRI, discharged at 1000°C from the rotary kiln, is cooled to approximately 100 °C in ca. two hours) penetrates the solids bed and nitrides DRI particles. Possible rate-determining steps for nitriding in the cooler have been evaluated. Nitriding of DRI particles is predicted to be rapid: the most plausible location for rapid nitrogen pickup is the first 5 meters of the rotary cooler, where the high temperature, nitrogen-rich gas atmosphere and rapid solids bed mixing are conducive to nitriding; solid-state and pore diffusion of nitrogen into DRI particles are predicted to be rapid too. The most plausible rate determining step for nitriding of DRI particles is that of nitrogen dissociation on the DRI surface, which can be further retarded by the presence of sulphur. A strong correlation was found between the amount of “melt-in” carbon in the liquid steel and the final tap nitrogen content, with 0.3% C resulting in nitrogen levels as low as 50 ppm (80 ppm or less is desired on the plant in question) at tap, even with DRI material that is high in nitrogen and contains virtually no carbon. Proposals to increase the melt-in carbon are included. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Materials Science and Metallurgical Engineering / unrestricted

Page generated in 0.0284 seconds