• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 234
  • 44
  • 44
  • 35
  • 17
  • 13
  • 12
  • 9
  • 6
  • 6
  • 5
  • 1
  • Tagged with
  • 484
  • 110
  • 104
  • 102
  • 94
  • 92
  • 88
  • 79
  • 60
  • 55
  • 50
  • 48
  • 47
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

A Low Cost Stereo Based 3d Slam For Wearable Applications

Saka, Mustafa Yasin 01 December 2010 (has links) (PDF)
A wearable robot should know its environment and its location in order to help its operator. Wearable robots are becoming more feasible with the development of more powerful and smaller computing devices and cameras. The main aim of this research is to build a wearable robot with a low cost stereo camera system which explores a room sized unknown environment online and automatically. To achieve 3D localization and map building for the wearable robot, a consistent visual-SLAM algorithm is implemented by using point features in the environment and Extended Kalman Filter for state estimation. The whole system includes camera models and calibration, feature extraction, depth measurement and Extended Kalman Filter algorithm. Moreover, a map management algorithm is developed. This algorithm keeps the number of features spatially uniform in the scene and adds new features when feature number decreases in a frame. Furthermore, a user-interface is presented so that the location of the camera,the features and the constructed map are visualized online. Most importantly, the system is conducted by a low-cost stereo system.
272

Tectonic smoothing and mapping

Ni, Kai 16 May 2011 (has links)
Large-scale mapping has become the key to numerous applications, e.g. simultaneous localization and mapping (SLAM) for autonomous robots. Despite of the success of many SLAM projects, there are still some challenging scenarios in which most of the current algorithms are not able to deliver an exact solution fast enough. One of these challenges is the size of SLAM problems, which has increased by several magnitudes over the last decade. Another challenge for SLAM problems is the large amount of noise baked in the measurements, which often yields poor initializations and slows or even fails the optimization. Urban 3D reconstruction is another popular application for large-scale mapping and has received considerable attention recently from the computer vision community. High-quality 3D models are useful in various successful cartographic and architectural applications, such as Google Earth or Microsoft Live Local. At the heart of urban reconstruction problems is structure from motion (SfM). Due to the wide availability of cameras, especially on handhold devices, SfM is becoming a more and more crucial technique to handle a large amount of images. In the thesis, I present a novel batch algorithm, namely Tectonic Smoothing and Mapping (TSAM). I will show that the original SLAM graph can be recursively partitioned into multiple-level submaps using the nested dissection algorithm, which leads to the cluster tree, a powerful graph representation. By employing the nested dissection algorithm, the algorithm greatly minimizes the dependencies between two subtrees, and the optimization of the original graph can be done using a bottom-up inference along the corresponding cluster tree. To speed up the computation, a base node is introduced for each submap and is used to represent the rigid transformation of the submap in the global coordinate frame. As a result, the optimization moves the base nodes rather than the actual submap variables. I will also show that TSAM can be successfully applied to the SfM problem as well, in which a hypergraph representation is employed to capture the pairwise constraints between cameras. The hierarchical partitioning based on the hypergraph not only yields a cluster tree as in the SLAM problem but also forces resulting submaps to be nonsingular. I will demonstrate the TSAM algorithm using various simulation and real-world data sets.
273

Evaluating SLAM algorithms for Autonomous Helicopters

Skoglund, Martin January 2008 (has links)
<p>Navigation with unmanned aerial vehicles (UAVs) requires good knowledge of the current position and other states. A UAV navigation system often uses GPS and inertial sensors in a state estimation solution. If the GPS signal is lost or corrupted state estimation must still be possible and this is where simultaneous localization and mapping (SLAM) provides a solution. SLAM considers the problem of incrementally building a consistent map of a previously unknown environment and simultaneously localize itself within this map, thus a solution does not require position from the GPS receiver.</p><p>This thesis presents a visual feature based SLAM solution using a low resolution video camera, a low-cost inertial measurement unit (IMU) and a barometric pressure sensor. State estimation in made with a extended information filter (EIF) where sparseness in the information matrix is enforced with an approximation.</p><p>An implementation is evaluated on real flight data and compared to a EKF-SLAM solution. Results show that both solutions provide similar estimates but the EIF is over-confident. The sparse structure is exploited, possibly not fully, making the solution nearly linear in time and storage requirements are linear in the number of features which enables evaluation for a longer period of time.</p>
274

Towards visual localization, mapping and moving objects tracking by a mobile robot: a geometric and probabilistic approach

Sola Ortega, Joan 02 February 2007 (has links) (PDF)
Dans cette thèse, nous résolvons le problème de reconstruire simultanément une représentation de la géométrie du monde, de la trajectoire de l'observateur, et de la trajectoire des objets mobiles, à l'aide de la vision. Nous divisons le problème en trois étapes : D'abord, nous donnons une solution au problème de la cartographie et localisation simultanées pour la vision monoculaire qui fonctionne dans les situations les moins bien conditionnées géométriquement. Ensuite, nous incorporons l'observabilité 3D instantanée en dupliquant le matériel de vision avec traitement monoculaire. Ceci élimine les inconvénients inhérents aux systèmes stéréo classiques. Nous ajoutons enfin la détection et suivi des objets mobiles proches en nous servant de cette observabilité 3D. Nous choisissons une représentation éparse et ponctuelle du monde et ses objets. La charge calculatoire des algorithmes de perception est allégée en focalisant activement l'attention aux régions de l'image avec plus d'intérêt.
275

The roles of allocentric representations in autonomous local navigation

Ta Huynh, Duy Nguyen 08 June 2015 (has links)
In this thesis, I study the computational advantages of the allocentric represen- tation as compared to the egocentric representation for autonomous local navigation. Whereas in the allocentric framework, all variables of interest are represented with respect to a coordinate frame attached to an object in the scene, in the egocentric one, they are always represented with respect to the robot frame at each time step. In contrast with well-known results in the Simultaneous Localization and Mapping literature, I show that the amounts of nonlinearity of these two representations, where poses are elements of Lie-group manifolds, do not affect the accuracy of Gaussian- based filtering methods for perception at both the feature level and the object level. Furthermore, although these two representations are equivalent at the object level, the allocentric filtering framework is better than the egocentric one at the feature level due to its advantages in the marginalization process. Moreover, I show that the object- centric perspective, inspired by the allocentric representation, enables novel linear- time filtering algorithms, which significantly outperform state-of-the-art feature-based filtering methods with a small trade-off in accuracy due to a low-rank approximation. Finally, I show that the allocentric representation is also better than the egocentric representation in Model Predictive Control for local trajectory planning and obstacle avoidance tasks.
276

Fusion of carrier-phase differential GPS, bundle-adjustment-based visual SLAM, and inertial navigation for precisely and globally-registered augmented reality

Shepard, Daniel Phillip 16 September 2013 (has links)
Methodologies are proposed for combining carrier-phase differential GPS (CDGPS), visual simultaneous localization and mapping (SLAM), and inertial measurements to obtain precise and globally-referenced position and attitude estimates of a rigid structure connecting a GPS receiver, a camera, and an inertial measurement unit (IMU). As part of developing these methodologies, observability of globally-referenced attitude based solely on GPS-based position estimates and visual feature measurements is proven. Determination of attitude in this manner eliminates the need for attitude estimates based on magnetometer and accelerometer measurements, which are notoriously susceptible to magnetic disturbances. This combination of navigation techniques, if coupled properly, is capable of attaining centimeter-level or better absolute positioning and degree-level or better absolute attitude accuracies in any space, both indoors and out. Such a navigation system is ideally suited for application to augmented reality (AR), which often employs a GPS receiver, a camera, and an IMU, and would result in tight registration of virtual elements to the real world. A prototype AR system is presented that represents a first step towards coupling CDGPS, visual SLAM, and inertial navigation. While this prototype AR system does not couple CDGPS and visual SLAM tightly enough to obtain some of the benefit of the proposed methodologies, the system is capable of demonstrating an upper bound on the precision that such a combination of navigation techniques could attain. Test results for the prototype AR system are presented for a dynamic scenario that demonstrate sub-centimeter-level positioning precision and sub-degree-level attitude precision. This level of precision would enable convincing augmented visuals. / text
277

Semantic mapping for service robots: building and using maps for mobile manipulators in semi-structured environments

Trevor, Alexander J. B. 08 June 2015 (has links)
Although much progress has been made in the field of robotic mapping, many challenges remain including: efficient semantic segmentation using RGB-D sensors, map representations that include complex features (structures and objects), and interfaces for interactive annotation of maps. This thesis addresses how prior knowledge of semi-structured human environments can be leveraged to improve segmentation, mapping, and semantic annotation of maps. We present an organized connected component approach for segmenting RGB-D data into planes and clusters. These segments serve as input to our mapping approach that utilizes them as planar landmarks and object landmarks for Simultaneous Localization and Mapping (SLAM), providing necessary information for service robot tasks and improving data association and loop closure. These features are meaningful to humans, enabling annotation of mapped features to establish common ground and simplifying tasking. A modular, open-source software framework, the OmniMapper, is also presented that allows a number of different sensors and features to be combined to generate a combined map representation, and enabling easy addition of new feature types.
278

Critical Lattice: The Coalitional Practices and Potentialities of the Tucson Youth Poetry Slam

Fields, Amanda January 2015 (has links)
In this dissertation, I use ethnographic observations, interviews, personal narrative, and analysis of youth slam poetry in conversation with theories of identification to demonstrate how members of the Tucson Youth Poetry Slam (TYPS) perform, inhabit, and develop a consciousness indicative of coalition and critical inquiry. TYPS poets demonstrate evidence of what I propose as critical latticework, an image and heuristic that brings together identificatory screen-work with rhizomatic and intersectional perspectives on growth and development. Through my analyses of poetry, interviews, and the activities of this youth slam community, I aim to illustrate the value of critical latticework as a perspective that can contribute to altering our perceptions of youth as developing in one direction, with one sense of healthy progression to adulthood. A critical lattice is another way of perceiving the activities of identification that take place in in-between-and-through-spaces, as well as the potential activism and labor occurring in those spaces, which act as more than screens but spaces of growth and significant chaos. I argue that an understanding of critical latticework is transferrable to writing classrooms, offering a practical image with which students of writing can imagine and move with fluidity to generate meaningful discourse and expand their perspectives on identity and writing.
279

Evaluating SLAM algorithms for Autonomous Helicopters

Skoglund, Martin January 2008 (has links)
Navigation with unmanned aerial vehicles (UAVs) requires good knowledge of the current position and other states. A UAV navigation system often uses GPS and inertial sensors in a state estimation solution. If the GPS signal is lost or corrupted state estimation must still be possible and this is where simultaneous localization and mapping (SLAM) provides a solution. SLAM considers the problem of incrementally building a consistent map of a previously unknown environment and simultaneously localize itself within this map, thus a solution does not require position from the GPS receiver. This thesis presents a visual feature based SLAM solution using a low resolution video camera, a low-cost inertial measurement unit (IMU) and a barometric pressure sensor. State estimation in made with a extended information filter (EIF) where sparseness in the information matrix is enforced with an approximation. An implementation is evaluated on real flight data and compared to a EKF-SLAM solution. Results show that both solutions provide similar estimates but the EIF is over-confident. The sparse structure is exploited, possibly not fully, making the solution nearly linear in time and storage requirements are linear in the number of features which enables evaluation for a longer period of time.
280

Application of locality sensitive hashing to feature matching and loop closure detection

Shahbazi, Hossein Unknown Date
No description available.

Page generated in 0.0153 seconds