• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Appearance-based mapping and localization using feature stability histograms for mobile robot navigation

Bacca Cortés, Eval Bladimir 20 June 2012 (has links)
This work proposes an appearance-based SLAM method whose main contribution is the Feature Stability Histogram (FSH). The FSH is built using a voting schema, if the feature is re-observed, it will be promoted; otherwise it progressively decreases its corresponding FSH value. The FSH is based on the human memory model to deal with changing environments and long-term SLAM. This model introduces concepts of Short-Term memory (STM), which retains information long enough to use it, and Long-Term memory (LTM), which retains information for longer periods of time. If the entries in the STM are rehearsed, they become part of the LTM (i.e. they become more stable). However, this work proposes a different memory model, allowing to any input be part of the STM or LTM considering the input strength. The most stable features are only used for SLAM. This innovative feature management approach is able to cope with changing environments, and long-term SLAM. / Este trabajo propone un método de SLAM basado en apariencia cuya principal contribución es el Histograma de Estabilidad de Características (FSH). El FSH es construido por votación, si una característica es re-observada, ésta será promovida; de lo contrario su valor FSH progresivamente es reducido. El FSH es basado en el modelo de memoria humana para ocuparse de ambientes cambiantes y SLAM a largo término. Este modelo introduce conceptos como memoria a corto plazo (STM) y largo plazo (LTM), las cuales retienen información por cortos y largos periodos de tiempo. Si una entrada a la STM es reforzada, ésta hará parte de la LTM (i.e. es más estable). Sin embargo, este trabajo propone un modelo de memoria diferente, permitiendo a cualquier entrada ser parte de la STM o LTM considerando su intensidad. Las características más estables son solamente usadas en SLAM. Esta innovadora estrategia de manejo de características es capaz de hacer frente a ambientes cambiantes y SLAM de largo término.

Page generated in 0.0701 seconds