• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 21
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Formalizing biomedical concepts from textual definitions: Research Article

Tsatsaronis, George, Ma, Yue, Petrova, Alina, Kissa, Maria, Distel, Felix, Baader, Franz, Schroeder, Michael 04 January 2016 (has links)
Background Ontologies play a major role in life sciences, enabling a number of applications, from new data integration to knowledge verification. SNOMED CT is a large medical ontology that is formally defined so that it ensures global consistency and support of complex reasoning tasks. Most biomedical ontologies and taxonomies on the other hand define concepts only textually, without the use of logic. Here, we investigate how to automatically generate formal concept definitions from textual ones. We develop a method that uses machine learning in combination with several types of lexical and semantic features and outputs formal definitions that follow the structure of SNOMED CT concept definitions. Results We evaluate our method on three benchmarks and test both the underlying relation extraction component as well as the overall quality of output concept definitions. In addition, we provide an analysis on the following aspects: (1) How do definitions mined from the Web and literature differ from the ones mined from manually created definitions, e.g., MeSH? (2) How do different feature representations, e.g., the restrictions of relations’ domain and range, impact on the generated definition quality?, (3) How do different machine learning algorithms compare to each other for the task of formal definition generation?, and, (4) What is the influence of the learning data size to the task? We discuss all of these settings in detail and show that the suggested approach can achieve success rates of over 90%. In addition, the results show that the choice of corpora, lexical features, learning algorithm and data size do not impact the performance as strongly as semantic types do. Semantic types limit the domain and range of a predicted relation, and as long as relations’ domain and range pairs do not overlap, this information is most valuable in formalizing textual definitions. Conclusions The analysis presented in this manuscript implies that automated methods can provide a valuable contribution to the formalization of biomedical knowledge, thus paving the way for future applications that go beyond retrieval and into complex reasoning. The method is implemented and accessible to the public from: https://github.com/alifahsyamsiyah/learningDL.
22

Evolution von ontologiebasierten Mappings in den Lebenswissenschaften / Evolution of ontology-based mappings in the life sciences

Groß, Anika 19 March 2014 (has links) (PDF)
Im Bereich der Lebenswissenschaften steht eine große und wachsende Menge heterogener Datenquellen zur Verfügung, welche häufig in quellübergreifenden Analysen und Auswertungen miteinander kombiniert werden. Um eine einheitliche und strukturierte Erfassung von Wissen sowie einen formalen Austausch zwischen verschiedenen Applikationen zu erleichtern, kommen Ontologien und andere strukturierte Vokabulare zum Einsatz. Sie finden Anwendung in verschiedenen Domänen wie der Molekularbiologie oder Chemie und dienen zumeist der Annotation realer Objekte wie z.B. Gene oder Literaturquellen. Unterschiedliche Ontologien enthalten jedoch teilweise überlappendes Wissen, so dass die Bestimmung einer Abbildung (Ontologiemapping) zwischen ihnen notwendig ist. Oft ist eine manuelle Mappingerstellung zwischen großen Ontologien kaum möglich, weshalb typischerweise automatische Verfahren zu deren Abgleich (Matching) eingesetzt werden. Aufgrund neuer Forschungserkenntnisse und Nutzeranforderungen verändern sich die Ontologien kontinuierlich weiter. Die Evolution der Ontologien hat wiederum Auswirkungen auf abhängige Daten wie beispielsweise Annotations- und Ontologiemappings, welche entsprechend aktualisiert werden müssen. Im Rahmen dieser Arbeit werden neue Methoden und Algorithmen zum Umgang mit der Evolution ontologie-basierter Mappings entwickelt. Dabei wird die generische Infrastruktur GOMMA zur Verwaltung und Analyse der Evolution von Ontologien und Mappings genutzt und erweitert. Zunächst wurde eine vergleichende Analyse der Evolution von Ontologiemappings für drei Subdomänen der Lebenswissenschaften durchgeführt. Ontologien sowie Mappings unterliegen teilweise starken Änderungen, wobei die Evolutionsintensität von der untersuchten Domäne abhängt. Insgesamt zeigt sich ein deutlicher Einfluss von Ontologieänderungen auf Ontologiemappings. Dementsprechend können bestehende Mappings infolge der Weiterentwicklung von Ontologien ungültig werden, so dass sie auf aktuelle Ontologieversionen migriert werden müssen. Dabei sollte eine aufwendige Neubestimmung der Mappings vermieden werden. In dieser Arbeit werden zwei generische Algorithmen zur (semi-) automatischen Adaptierung von Ontologiemappings eingeführt. Ein Ansatz basiert auf der Komposition von Ontologiemappings, wohingegen der andere Ansatz eine individuelle Behandlung von Ontologieänderungen zur Adaptierung der Mappings erlaubt. Beide Verfahren ermöglichen die Wiederverwendung unbeeinflusster, bereits bestätigter Mappingteile und adaptieren nur die von Änderungen betroffenen Bereiche der Mappings. Eine Evaluierung für sehr große, biomedizinische Ontologien und Mappings zeigt, dass beide Verfahren qualitativ hochwertige Ergebnisse produzieren. Ähnlich zu Ontologiemappings werden auch ontologiebasierte Annotationsmappings durch Ontologieänderungen beeinflusst. Die Arbeit stellt einen generischen Ansatz zur Bewertung der Qualität von Annotationsmappings auf Basis ihrer Evolution vor. Verschiedene Qualitätsmaße erlauben die Identifikation glaubwürdiger Annotationen beispielsweise anhand ihrer Stabilität oder Herkunftsinformationen. Eine umfassende Analyse großer Annotationsdatenquellen zeigt zahlreiche Instabilitäten z.B. aufgrund temporärer Annotationslöschungen. Dementsprechend stellt sich die Frage, inwieweit die Datenevolution zu einer Veränderung von abhängigen Analyseergebnissen führen kann. Dazu werden die Auswirkungen der Ontologie- und Annotationsevolution auf sogenannte funktionale Analysen großer biologischer Datensätze untersucht. Eine Evaluierung anhand verschiedener Stabilitätsmaße erlaubt die Bewertung der Änderungsintensität der Ergebnisse und gibt Aufschluss, inwieweit Nutzer mit einer signifikanten Veränderung ihrer Ergebnisse rechnen müssen. Darüber hinaus wird GOMMA um effiziente Verfahren für das Matching sehr großer Ontologien erweitert. Diese werden u.a. für den Abgleich neuer Konzepte während der Adaptierung von Ontologiemappings benötigt. Viele der existierenden Match-Systeme skalieren nicht für das Matching besonders großer Ontologien wie sie im Bereich der Lebenswissenschaften auftreten. Ein effizienter, kompositionsbasierter Ansatz gleicht Ontologien indirekt ab, indem existierende Mappings zu Mediatorontologien wiederverwendet und miteinander kombiniert werden. Mediatorontologien enthalten wertvolles Hintergrundwissen, so dass sich die Mappingqualität im Vergleich zu einem direkten Matching verbessern kann. Zudem werden generelle Strategien für das parallele Ontologie-Matching unter Verwendung mehrerer Rechenknoten vorgestellt. Eine größenbasierte Partitionierung der Eingabeontologien verspricht eine gute Lastbalancierung und Skalierbarkeit, da kleinere Teilaufgaben des Matchings parallel verarbeitet werden können. Die Evaluierung im Rahmen der Ontology Alignment Evaluation Initiative (OAEI) vergleicht GOMMA und andere Systeme für das Matching von Ontologien in verschiedenen Domänen. GOMMA kann u.a. durch Anwendung des parallelen und kompositionsbasierten Matchings sehr gute Ergebnisse bezüglich der Effektivität und Effizienz des Matchings, insbesondere für Ontologien aus dem Bereich der Lebenswissenschaften, erreichen. / In the life sciences, there is an increasing number of heterogeneous data sources that need to be integrated and combined in comprehensive analysis tasks. Often ontologies and other structured vocabularies are used to provide a formal representation of knowledge and to facilitate data exchange between different applications. Ontologies are used in different domains like molecular biology or chemistry. One of their most important applications is the annotation of real-world objects like genes or publications. Since different ontologies can contain overlapping knowledge it is necessary to determine mappings between them (ontology mappings). A manual mapping creation can be very time-consuming or even infeasible such that (semi-) automatic ontology matching methods are typically applied. Ontologies are not static but underlie continuous modifications due to new research insights and changing user requirements. The evolution of ontologies can have impact on dependent data like annotation or ontology mappings. This thesis presents novel methods and algorithms to deal with the evolution of ontology-based mappings. Thereby the generic infrastructure GOMMA is used and extended to manage and analyze the evolution of ontologies and mappings. First, a comparative evolution analysis for ontologies and mappings from three life science domains shows heavy changes in ontologies and mappings as well as an impact of ontology changes on the mappings. Hence, existing ontology mappings can become invalid and need to be migrated to current ontology versions. Thereby an expensive redetermination of the mappings should be avoided. This thesis introduces two generic algorithms to (semi-) automatically adapt ontology mappings: (1) a composition-based adaptation relies on the principle of mapping composition, and (2) a diff-based adaptation algorithm allows for individually handling change operations to update mappings. Both approaches reuse unaffected mapping parts, and adapt only affected parts of the mappings. An evaluation for very large biomedical ontologies and mappings shows that both approaches produce ontology mappings of high quality. Similarly, ontology changes may also affect ontology-based annotation mappings. The thesis introduces a generic evaluation approach to assess the quality of annotation mappings based on their evolution. Different quality measures allow for the identification of reliable annotations, e.g., based on their stability or provenance information. A comprehensive analysis of large annotation data sources shows numerous instabilities, e.g., due to the temporary absence of annotations. Such modifications may influence results of dependent applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. The question arises to what degree ontology and annotation changes may affect such analyses. Based on different stability measures the evaluation assesses change intensities of application results and gives insights whether users need to expect significant changes of their analysis results. Moreover, GOMMA is extended by large-scale ontology matching techniques. Such techniques are useful, a.o., to match new concepts during ontology mapping adaptation. Many existing match systems do not scale for aligning very large ontologies, e.g., from the life science domain. One efficient composition-based approach indirectly computes ontology mappings by reusing and combining existing mappings to intermediate ontologies. Intermediate ontologies can contain useful background knowledge such that the mapping quality can be improved compared to a direct match approach. Moreover, the thesis introduces general strategies for matching ontologies in parallel using several computing nodes. A size-based partitioning of the input ontologies enables good load balancing and scalability since smaller match tasks can be processed in parallel. The evaluation of the Ontology Alignment Evaluation Initiative (OAEI) compares GOMMA and other systems in terms of matching ontologies from different domains. Using the parallel and composition-based matching, GOMMA can achieve very good results w.r.t. efficiency and effectiveness, especially for ontologies from the life science domain.
23

Evolution von ontologiebasierten Mappings in den Lebenswissenschaften

Groß, Anika 05 March 2014 (has links)
Im Bereich der Lebenswissenschaften steht eine große und wachsende Menge heterogener Datenquellen zur Verfügung, welche häufig in quellübergreifenden Analysen und Auswertungen miteinander kombiniert werden. Um eine einheitliche und strukturierte Erfassung von Wissen sowie einen formalen Austausch zwischen verschiedenen Applikationen zu erleichtern, kommen Ontologien und andere strukturierte Vokabulare zum Einsatz. Sie finden Anwendung in verschiedenen Domänen wie der Molekularbiologie oder Chemie und dienen zumeist der Annotation realer Objekte wie z.B. Gene oder Literaturquellen. Unterschiedliche Ontologien enthalten jedoch teilweise überlappendes Wissen, so dass die Bestimmung einer Abbildung (Ontologiemapping) zwischen ihnen notwendig ist. Oft ist eine manuelle Mappingerstellung zwischen großen Ontologien kaum möglich, weshalb typischerweise automatische Verfahren zu deren Abgleich (Matching) eingesetzt werden. Aufgrund neuer Forschungserkenntnisse und Nutzeranforderungen verändern sich die Ontologien kontinuierlich weiter. Die Evolution der Ontologien hat wiederum Auswirkungen auf abhängige Daten wie beispielsweise Annotations- und Ontologiemappings, welche entsprechend aktualisiert werden müssen. Im Rahmen dieser Arbeit werden neue Methoden und Algorithmen zum Umgang mit der Evolution ontologie-basierter Mappings entwickelt. Dabei wird die generische Infrastruktur GOMMA zur Verwaltung und Analyse der Evolution von Ontologien und Mappings genutzt und erweitert. Zunächst wurde eine vergleichende Analyse der Evolution von Ontologiemappings für drei Subdomänen der Lebenswissenschaften durchgeführt. Ontologien sowie Mappings unterliegen teilweise starken Änderungen, wobei die Evolutionsintensität von der untersuchten Domäne abhängt. Insgesamt zeigt sich ein deutlicher Einfluss von Ontologieänderungen auf Ontologiemappings. Dementsprechend können bestehende Mappings infolge der Weiterentwicklung von Ontologien ungültig werden, so dass sie auf aktuelle Ontologieversionen migriert werden müssen. Dabei sollte eine aufwendige Neubestimmung der Mappings vermieden werden. In dieser Arbeit werden zwei generische Algorithmen zur (semi-) automatischen Adaptierung von Ontologiemappings eingeführt. Ein Ansatz basiert auf der Komposition von Ontologiemappings, wohingegen der andere Ansatz eine individuelle Behandlung von Ontologieänderungen zur Adaptierung der Mappings erlaubt. Beide Verfahren ermöglichen die Wiederverwendung unbeeinflusster, bereits bestätigter Mappingteile und adaptieren nur die von Änderungen betroffenen Bereiche der Mappings. Eine Evaluierung für sehr große, biomedizinische Ontologien und Mappings zeigt, dass beide Verfahren qualitativ hochwertige Ergebnisse produzieren. Ähnlich zu Ontologiemappings werden auch ontologiebasierte Annotationsmappings durch Ontologieänderungen beeinflusst. Die Arbeit stellt einen generischen Ansatz zur Bewertung der Qualität von Annotationsmappings auf Basis ihrer Evolution vor. Verschiedene Qualitätsmaße erlauben die Identifikation glaubwürdiger Annotationen beispielsweise anhand ihrer Stabilität oder Herkunftsinformationen. Eine umfassende Analyse großer Annotationsdatenquellen zeigt zahlreiche Instabilitäten z.B. aufgrund temporärer Annotationslöschungen. Dementsprechend stellt sich die Frage, inwieweit die Datenevolution zu einer Veränderung von abhängigen Analyseergebnissen führen kann. Dazu werden die Auswirkungen der Ontologie- und Annotationsevolution auf sogenannte funktionale Analysen großer biologischer Datensätze untersucht. Eine Evaluierung anhand verschiedener Stabilitätsmaße erlaubt die Bewertung der Änderungsintensität der Ergebnisse und gibt Aufschluss, inwieweit Nutzer mit einer signifikanten Veränderung ihrer Ergebnisse rechnen müssen. Darüber hinaus wird GOMMA um effiziente Verfahren für das Matching sehr großer Ontologien erweitert. Diese werden u.a. für den Abgleich neuer Konzepte während der Adaptierung von Ontologiemappings benötigt. Viele der existierenden Match-Systeme skalieren nicht für das Matching besonders großer Ontologien wie sie im Bereich der Lebenswissenschaften auftreten. Ein effizienter, kompositionsbasierter Ansatz gleicht Ontologien indirekt ab, indem existierende Mappings zu Mediatorontologien wiederverwendet und miteinander kombiniert werden. Mediatorontologien enthalten wertvolles Hintergrundwissen, so dass sich die Mappingqualität im Vergleich zu einem direkten Matching verbessern kann. Zudem werden generelle Strategien für das parallele Ontologie-Matching unter Verwendung mehrerer Rechenknoten vorgestellt. Eine größenbasierte Partitionierung der Eingabeontologien verspricht eine gute Lastbalancierung und Skalierbarkeit, da kleinere Teilaufgaben des Matchings parallel verarbeitet werden können. Die Evaluierung im Rahmen der Ontology Alignment Evaluation Initiative (OAEI) vergleicht GOMMA und andere Systeme für das Matching von Ontologien in verschiedenen Domänen. GOMMA kann u.a. durch Anwendung des parallelen und kompositionsbasierten Matchings sehr gute Ergebnisse bezüglich der Effektivität und Effizienz des Matchings, insbesondere für Ontologien aus dem Bereich der Lebenswissenschaften, erreichen. / In the life sciences, there is an increasing number of heterogeneous data sources that need to be integrated and combined in comprehensive analysis tasks. Often ontologies and other structured vocabularies are used to provide a formal representation of knowledge and to facilitate data exchange between different applications. Ontologies are used in different domains like molecular biology or chemistry. One of their most important applications is the annotation of real-world objects like genes or publications. Since different ontologies can contain overlapping knowledge it is necessary to determine mappings between them (ontology mappings). A manual mapping creation can be very time-consuming or even infeasible such that (semi-) automatic ontology matching methods are typically applied. Ontologies are not static but underlie continuous modifications due to new research insights and changing user requirements. The evolution of ontologies can have impact on dependent data like annotation or ontology mappings. This thesis presents novel methods and algorithms to deal with the evolution of ontology-based mappings. Thereby the generic infrastructure GOMMA is used and extended to manage and analyze the evolution of ontologies and mappings. First, a comparative evolution analysis for ontologies and mappings from three life science domains shows heavy changes in ontologies and mappings as well as an impact of ontology changes on the mappings. Hence, existing ontology mappings can become invalid and need to be migrated to current ontology versions. Thereby an expensive redetermination of the mappings should be avoided. This thesis introduces two generic algorithms to (semi-) automatically adapt ontology mappings: (1) a composition-based adaptation relies on the principle of mapping composition, and (2) a diff-based adaptation algorithm allows for individually handling change operations to update mappings. Both approaches reuse unaffected mapping parts, and adapt only affected parts of the mappings. An evaluation for very large biomedical ontologies and mappings shows that both approaches produce ontology mappings of high quality. Similarly, ontology changes may also affect ontology-based annotation mappings. The thesis introduces a generic evaluation approach to assess the quality of annotation mappings based on their evolution. Different quality measures allow for the identification of reliable annotations, e.g., based on their stability or provenance information. A comprehensive analysis of large annotation data sources shows numerous instabilities, e.g., due to the temporary absence of annotations. Such modifications may influence results of dependent applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. The question arises to what degree ontology and annotation changes may affect such analyses. Based on different stability measures the evaluation assesses change intensities of application results and gives insights whether users need to expect significant changes of their analysis results. Moreover, GOMMA is extended by large-scale ontology matching techniques. Such techniques are useful, a.o., to match new concepts during ontology mapping adaptation. Many existing match systems do not scale for aligning very large ontologies, e.g., from the life science domain. One efficient composition-based approach indirectly computes ontology mappings by reusing and combining existing mappings to intermediate ontologies. Intermediate ontologies can contain useful background knowledge such that the mapping quality can be improved compared to a direct match approach. Moreover, the thesis introduces general strategies for matching ontologies in parallel using several computing nodes. A size-based partitioning of the input ontologies enables good load balancing and scalability since smaller match tasks can be processed in parallel. The evaluation of the Ontology Alignment Evaluation Initiative (OAEI) compares GOMMA and other systems in terms of matching ontologies from different domains. Using the parallel and composition-based matching, GOMMA can achieve very good results w.r.t. efficiency and effectiveness, especially for ontologies from the life science domain.
24

Enrichment of Archetypes with Domain Knowledge to Enhance the Consistency of Electronic Health Records

Giménez Solano, Vicente Miguel 21 January 2022 (has links)
[ES] La consistencia de los datos de la HCE, como dimensión de la calidad, se considera un requisito esencial para la mejora de la prestación de la asistencia sanitaria, los procesos de toma de decisiones clínicas y la promoción de la investigación clínica. En este contexto, la cooperación entre la información y los modelos de dominio se considera esencial en la literatura, pero la comunidad científica no la ha abordado adecuadamente hasta la fecha. La contribución principal de esta tesis es el desarrollo de métodos y herramientas para la inclusión de expresiones de enlaces terminológicos en reglas de consistencia. Las contribuciones específicas son: - Definición de un método para ejecutar ECs sobre una base de datos de SNOMED CT orientada a grafos. - Definición de métodos para simplificar ECs antes y después de su ejecución, y su validación semántica conforme al Machine Readable Concept Model de SNOMED CT (MRCM). - Definición de un método para visualizar, explorar dinámicamente, comprender y validar subconjuntos de SNOMED CT. - Desarrollo de SNQuery, una plataforma que ejecuta, simplifica y valida ECs y visualiza los subconjuntos resultantes. - Definición de EHRules, un lenguaje de expresiones basado en el openEHR Expression Language para la especificación de reglas de consistencia en arquetipos, incluido el enlace terminológico de contenido, con el fin de enriquecer los arquetipos con conocimiento del dominio. - Definición de un método para ejecutar las expresiones de EHRules con el fin de validar la consistencia de los datos de la HCE mediante la ejecución de dichas expresiones sobre instancias de datos de pacientes. Nuestro objetivo es que estas contribuciones ayuden a mejorar la calidad de la HCE, ya que proporcionan métodos y herramientas para la validación y mejora de la consistencia de los datos de la HCE. Pretendemos, además, mediante la definición de enlaces de contenido entre modelos de información y terminologías clínicas, elevar el nivel de interoperabilidad semántica, para lo cual la definición de enlaces terminológicos es crucial. / [CA] La consistència de les dades de la HCE, com a dimensió de la qualitat, es considera un requisit essencial per a la millora de la prestació de l'assistència sanitària, els processos de presa de decisions clíniques i la promoció de la investigació clínica. En aquest context, la cooperació entre la informació i els models de domini es considera essencial en la literatura, però la comunitat científica no l'ha abordada adequadament fins hui. La contribució principal d'aquesta tesi és el desenvolupament de mètodes i ferramentes per a la inclusió d'expressions d'enllaços terminològics en regles de consistència. Les contribucions específiques són: - Definició d'un mètode per a executar ECs sobre una base de dades de SNOMED CT orientada a grafs. - Definició de mètodes per a simplificar ECs abans i després de la seua execució, i la seua validació semàntica conforme al Machine Readable Concept Model de SNOMED CT (MRCM). - Definició d'un mètode per a visualitzar, explorar dinàmicament, comprendre i validar subconjunts de SNOMED CT. - Desenvolupament de SNQuery, una plataforma que executa, simplifica i valida ECs i visualitza els subconjunts resultants. - Definició de EHRules, un llenguatge d'expressions basat en l'openEHR Expression Language per a l'especificació de regles de consistència en arquetips, inclòs l'enllaç terminològic de contingut, amb la finalitat d'enriquir els arquetips amb coneixement del domini. - Definició d'un mètode per a executar les expressions de EHRules amb la finalitat de validar la consistència de les dades de la HCE mitjançant l'execució d'aquestes expressions sobre instàncies de dades de pacients. El nostre objectiu és que aquestes contribucions ajuden a millorar la qualitat de la HCE, ja que proporcionen mètodes i ferramentes per a la validació i millora de la consistència de les dades de la HCE. Pretenem, a més, mitjançant la definició d'enllaços de contingut entre models d'informació i terminologies clíniques, elevar el nivell d'interoperabilitat semàntica, per a la qual cosa la definició d'enllaços terminològics és crucial. / [EN] Consistency of EHR data, as a dimension of quality, is considered an essential requirement to the improvement of healthcare delivery, clinical decision-making processes, and the promotion of clinical research. In this context, cooperation between information and domain models has been considered essential in the literature, but it has not been adequately addressed by the scientific community to date. The main contribution of this thesis is the development of methods and tools for the inclusion of terminology binding expressions in consistency rules. Specific contributions are: - Definition of a method to execute ECs over a SNOMED CT graph-oriented database. - Definition of methods to simplify ECs before and after its execution and semantic validation according to the SNOMED CT Machine Readable Concept Model (MRCM). - Definition of a method to visualize, dynamically explore, understand and validate SNOMED CT subsets. - Development of SNQuery, an execution platform that executes, simplifies and validates ECs, and visualizes the resulting subsets. - Definition of EHRules, an expression language based on the openEHR Expression Language for the specification of consistency expressions in archetypes, including value set bindings, in order to enrich archetypes with domain knowledge. - Definition of a method to execute EHRules expressions in order to validate the consistency of EHR data by executing such rules over patient data instances. Our objective is that these contributions help to enhance the quality of EHR, as they provide methods and tools for the validation and enhancement of the EHR data consistency. We also intend, by defining value set bindings between information models and clinical terminologies, to raise the level of semantic interoperability, for which the definition of terminological bindings is crucial. / This thesis was partially funded by Ministerio de Economía y Competitividad, “Doctorados Industriales”, grant DIN2018-009951, and by Universitat Politècnica de València, “Formación de Personal Investigador” (FPI-UPV). / Giménez Solano, VM. (2021). Enrichment of Archetypes with Domain Knowledge to Enhance the Consistency of Electronic Health Records [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180082 / TESIS

Page generated in 0.0243 seconds