1 |
Usage and Development of Molecular Markers for Investigation of the Population and Ecological Genetics of <em>Bromus tectorum</em> L.Merrill, Keith R. 16 March 2011 (has links) (PDF)
This thesis includes two studies: The first examined patterns of neutral genetic diversity within Bromus tectorum L. across the IMW region, and uses patterns of microsatellite (SSR) genotype distribution to make inferences about the respective roles of adaptively significant genetic variation, adaptive phenotypic plasticity, and facultative outcrossing in the ongoing invasion and recent range expansion of B. tectorum. It has been previously demonstrated that, due to extremely low outcrossing rates, it is possible to characterize individual genotypes of this species using four SSR loci. We sampled 20 individuals from each of 96 B. tectorum populations (classified by region and habitat) from throughout the IMW and used these SSR markers to characterize each individual. We found 131 four-locus SSR genotypes; however, the 14 most common genotypes collectively accounted for 79.2% of the individuals sampled. Individuals with certain SSR genotypes sorted strongly into warm or salt desert habitats (stringent habitats) and flowered earlier than individuals with genotypes from more mesic habitats, providing evidence of adaptively significant genetic variation associated with these genotypes. Other SSR genotypes were found across a wide range of habitats though they tended to be less prevalent in stringent habitats, providing evidence that adaptive phenotypic plasticity may be important for the distribution of some common genotypes. We observed very few heterozygous individuals, consistent with the highly inbreeding reproductive strategy of B. tectorum. Because specialist genotypes dominating recently invaded areas within the IMW region contained unique alleles, they are not likely to have resulted from recombination, leading us to doubt the role of facultative outcrossing as a significant mechanism facilitating the current range expansion of B. tectorum in the IMW.Previous research investigating the population and ecological genetics of Bromus tectorum L. in the North American invaded range has relied on either allozyme or microsatellite (SSR) genetic analyses, both of which have proven to have shortcomings. In order to overcome the issues associated with these other marker types, in the second study of this thesis we developed single nucleotide polymorphism (SNP) markers for B. tectorum by 1) obtaining normalized cDNA, 2) sequencing normalized cDNA using 454 sequencing, 3) aligning resultant contigs and looking for SNPs, 4) designing assays for SNP validation and genotyping using KASPar, 5) converting working KASPar assays for use with the Fluidigm EP1 platform using the 96.96 Dynamic ArrayTM IFC. Sequencing resulted in 1258041 reads, which assembled into 65486 contigs (20782 large contigs exceeding 500 base pairs). Using selection criteria of at least 10x coverage and 30% of the minor allele, 3333 putative SNPs were identified. We developed KASP assays for 255 putative SNPs, which resulted in 101 working polymorphic assays. Ninety-six assays were then successfully converted for use with KASP on the Fluidigm EP1 genotyping platform using 96.96 dynamic arrays.
|
Page generated in 0.0483 seconds