• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 15
  • 9
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 280
  • 280
  • 280
  • 280
  • 64
  • 51
  • 35
  • 33
  • 29
  • 29
  • 29
  • 27
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Protective/Conductive Coatings for Ferritic Stainless Steel Interconnects Used in Solid Oxide Fuel Cells

Shaigan, Nima Unknown Date
No description available.
122

The study of anode materials for an intermediate temperature solid oxide fuel cell utilizing hydrogen sulfide as the fuel

Yates, Christopher Lee 05 1900 (has links)
No description available.
123

Investigating the integration of a solid oxide fuel cell and a gas turbine system with coal gasification technologies

Plummer, Dawson A. 12 1900 (has links)
No description available.
124

In situ investigations of gas-solid interfaces in solid-state electrochemical systems by FTIR spectroscopy

Lu, Xinyu 12 1900 (has links)
No description available.
125

Simulation of tubular solid oxide fuel cell behavior for integration into gas turbine cycles

Haynes, Comas Lamar 08 1900 (has links)
No description available.
126

Cermet Anodes for Solid Oxide Fuel Cells (SOFC) Systems Operating in Multiple Fuel Environments: Effects of Sulfur and Carbon Composition as well as Microstructure

O'Brien, Julie Suzanne 25 January 2012 (has links)
A series of cermet powders of composition NixCo(1-x)O-YSZ were synthesized for testing as cermet anode materials for SOFCs. The Co is found by powder XRD to become incorporated into the crystal lattice of the NiO, thus forming a true alloyed material. SEM and EDS results show two types of particles upon sintering to 1380oC: small, amorphous particles of YSZ and large, crystalline particles of nickel. The electrochemical oxidation of hydrogen on a cermet anode composed of Ni0.7Co0.3O-YSZ was investigated using a series of many button cells. Through EIS data, cyclic voltammetry data, the exchange current densities for these button cells were determined. Although a relatively large variation was found (expected to be due to microstructural variation) the average values for both methods of measurement is in good agreement in hydrogen. Following reduction in pure hydrogen, the fuel was changed to a mixture with high concentration of H2S. It was found that a concentration of 10 % H2S/H2 produced a sudden change in anode microstructure and resulted in loss of exchange current density. Lowering the amount of H2S in the initial fuel feed, which allowed for a more gradual microstructural change, allowed the cell to eventually function at concentrations in excess of 10 % H2S/H2. It was determined by OCV values in various concentrations of H2S/H2 that hydrogen is the predominant fuel of choice, even if H2S is available. Following electrochemical testing, slow cooling in a 10 % H2S/H2 mixture following produced metal sulfide spheres, as determined by SEM and EDS. Investigation in hydrocarbon, alcohol and biodiesel fuels was then undertaken to test the fuel variability of the given cermet anode material. Methane containing 10 % H2S was found to have increased exchange current density relative to poisoned hydrogen. Ethane and biodiesel experienced no increase in exchange current density, but a lengthening of the functional lifetime of the cell was observed, indicating reduced carbon poisoning. Methanol is a promising oxygen-containing SOFC fuel since it produced exchange current density values larger than hydrogen, and showed no evidence of coke formation by post-mortem SEM. Since oxygen-containing fuels are known to decompose in the gas phase at typical SOFC operating temperatures, the performance in a mixture of various CO/H2 fuels was then investigated. The Ni0.7Co0.3O-YSZ cermet anode gave higher exchange current density values for low ratio of CO/H2 fuels in the range 20/80 and 30/70 compared to pure H2. This is the first example of a Ni-based anode providing higher performance with a CO/H2 mixed fuel than for a pure H2 fuel. Finally, continuous running of a cell with fuel ratio 25/75 CO/H2 for 7 days produced exchange current density values, which were observed to increase significantly above the values for pure H2 during days 1-4 followed by deterioration below the value for hydrogen on subsequent days.
127

Study of CeO₂ synthesis from liquid precursors in a RF-inductively coupled plasma reactor

Castillo Martinez, Ian Altri. January 2007 (has links)
A new reactor and a novel in-situ sampling technique were developed for the study of the synthesis of CeO2 powders produced from dissolved cerium nitrate salts. The reactor minimized particle recirculation and provided a highly symmetric and undisturbed plasma flow suitable for the analysis of the phenomena affecting the formation of CeO2 powders. The sampling probe provided in-situ sampling of in-flight CeO2 particles and allowed continuous sampling without cross contamination. The sampled particles were collected using a wet collection system composed of a mist atomizer acting as a scrubber and a custom-made spray chamber. The entire collection system is portable and it was tested in the particle range of 20 nm to 100 mum. This information provided a picture of how CeO2 particles were formed. A numerical simulation of different plasma operating parameters using Fluent was presented. A comprehensive droplet-to-particle formation mechanism was deduced based on calorimetry, thermodynamics of CeO2 formation, numerical simulations and collected particles. The effect of adding water soluble fuels (alanine and glycine) to the original cerium nitrate solutions was investigated. Fuel addition decreased the temperature of CeO2 formation by acting as a local heat source as a result of fuel auto-ignition. The addition of fuel caused "particle size discrimination", and a single mode particle size distribution centered between 50-140 nm was achieved along the centerline of the reactor. / Also, heat and mass transfer effects were numerically investigated in evaporating solution droplets (20-40 mum in diameter) containing dissolved hexahydrated cerium nitrate in a stationary rf Ar-O2 thermal plasma. This model was developed to study the evaporation of a solution droplet surrounded by a porous crust in a stagnant rf Ar-O2 thermal plasma under reduced pressure. It considered a three phase system: a liquid core of dissolved Ce(NO 3)3.6H2O in water, a dry porous crust of homogeneously precipitated spherical crystals of equal size, and an Ar-O2 plasma under reduced pressure. The impact of different plasma operating parameters on the temperature and dissolved solid content profiles in the droplet was studied, i.e. surrounding plasma temperature, initial salt content and droplet size, plasma gas composition, and system pressure. Temperature and composition dependant thermophysical properties were used. The model was solved in a moving boundary frame using an ALE approach and considering Stefan flow. It provided the necessary information to understand the droplet to particle transformation steps in regions where in-flight probing was unfeasible, i.e. torch zone.
128

Protective/Conductive Coatings for Ferritic Stainless Steel Interconnects Used in Solid Oxide Fuel Cells

Shaigan, Nima 11 1900 (has links)
Ferritic stainless steels are the most commonly used materials for solid oxide fuel cell interconnect application. Although these alloys may meet the criteria for interconnect application for short periods of service, their application is limited for long-term use (i.e., 40,000 h) due to poor oxidation behaviour that results in a rapid increase in contact resistance. In addition, volatile Cr species migrating from the chromia scale can poison the cathode resulting in a considerable drop in performance of the cell. Coatings and surface modifications have been developed in order to mitigate the abovementioned problems. In this study, composite electrodeposition of reactive element containing particles in a metal matrix was considered as a solution to the interconnect problems. Nickel and Co were used as the metal matrix and LaCrO3 particles as the reactive element containing particles. The role of the particles was to improve the oxidation resistance and oxide scale adhesion, while the role of Ni or Co was to provide a matrix for embedding of the particles. Also, oxidation of the Ni or Co matrix led to the formation of conductive oxides. Moreover, as another part of this study, the effect of substrate composition on performance of steel interconnects was investigated. Numerous experimental techniques were used to study and characterise the oxidation behaviour of the composite coatings, as well as the metal-oxide scale interface properties. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), as well as surface analysis techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS), were used for the purpose of characterization. The substrate used for coating was AISI-SAE 430 stainless steel that is considered as a typical, formerly used interconnect material. Also, for the purpose of the metal-oxide scale interfacial study, ZMG232 stainless steel that is a specially designed interconnect alloy was used. It is shown that the composite coatings greatly reduce the contact resistance and effectively inhibit Cr outward migration. In addition, it was determined that the presence of impurities in the steel, especially Si, and the absence of reactive elements drastically contribute to interconnect degradation. / Materials Science and Engineering
129

Investigations of gas/electrode interactions in solid oxide fuel cells using vibrational spectroscopy

Abernathy, Harry Wilson, III 01 April 2008 (has links)
The goal of current solid oxide fuel cell (SOFC) research is to design electrode materials and other system components that permit the fuel cell to be operated in the 400-700ºC range. Cell performance in this lower temperature range is limited by the oxygen reduction process at the SOFC cathode and by multiple contamination processes. The work presented demonstrates that Raman spectroscopy, a form of vibrational spectroscopy, can provide structural and compositional information complementary to that from traditional characterization methods. Initial experiments into the oxygen reduction mechanism on SOFC cathodes were unable to detect surface oxygen species on selected perovksite-based SOFC cathode materials. However, the Raman signal from the cathode surface was able to be enhanced by depositing silver or gold nanoparticles on the cathode, creating the so-called surface-enhanced Raman scattering (SERS) effect. The Raman sample chamber was also used to study two possible electrode contamination processes. First, the deposition of carbon on nickel and copper anodes was observed when exposed to different hydrocarbon fuel gases. Second, the poisoning of an SOFC cathode by chromium-containing vapor (usually generated by stainless steel SOFC system components) was monitored. Overall, Raman spectroscopy was shown to be useful in many areas crucial to the development of practical, cost-effective SOFCs. The techniques developed here could also be applied to other high temperature electrochemical and catalytic systems.
130

Investigations into the interactions between sulfur and anodes for solid oxide fuel cells

Cheng, Zhe 05 March 2008 (has links)
Solid oxide fuel cells (SOFCs) are electrochemical devices based on solid oxide electrolytes that convert chemical energy in fuels directly into electricity via electrode reactions. SOFCs have the advantages of high energy efficiency and low emissions and hold the potential to be the power of the future, especially for small power generation systems (1-10 kW). Another unique advantage of SOFCs is the potential to directly utilize hydrocarbon fuels such as natural gas through internal reforming. However, all hydrocarbon fuels contain some sulfur compounds, which transform to hydrogen sulfide (H2S) in the reforming process and dramatically degrade the performance of the existing SOFCs. In this study, the interactions between sulfur contaminant (in the form of H2S) and the anodes for SOFCs were systematically investigated in order to gain a fundamental understanding of the mechanism of sulfur poisoning and ultimately to achieve rational design of sulfur-tolerant anodes. The sulfur poisoning behavior of the state-of-the-art Ni-YSZ cermet anodes was characterized using electrochemical measurements performed on button cells (of different structures) under various operating conditions, including H2S concentration, temperature, cell current density/terminal voltage, and cell structure. Also, the mechanisms of interactions between sulfur and the Ni-YSZ cermet anode were investigated using both ex situ and in situ characterization techniques such as Raman spectroscopy. Results suggest that the sulfur poisoning of Ni-YSZ cermet anodes at high temperatures in fuels with ppm-level H2S is due not to the formation of multi-layer conventional nickel sulfides but to the adsorption of sulfur on the nickel surface. In addition, new sulfur-tolerant anode materials were explored in this study. Thermodynamic principles were applied to predict the stability of candidate sulfur-tolerant anode materials and explain complex phenomena concerning the reactivity of candidate materials with hydrogen sulfide. The enhanced sulfur tolerance for some candidate anode materials such as (Gd2Ti1.4Mo0.6O7) is attributed to the transition of the surface from metal oxides to sulfides (i.e., MoS2), which enhances the catalytic activity and increases the number of reaction sites.

Page generated in 0.0316 seconds