• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 16
  • 16
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optical modulation and detection techniques for high-spectral efficiency

Chien, Cheng-Chung. January 2008 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2008. / Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 10, 2010). Includes bibliographical references (p. 100-112). Also issued in print.
12

Minimization of jitter in SDH/SONET networks via an all-digital desynchronizer

Autry, Chris Brian 08 1900 (has links)
No description available.
13

NEPTSim: simulating NEPTUNE Canada using OMNeT++

Martonalti, Burak 29 August 2012 (has links)
North-East Pacific Undersea Network Experiments (NEPTUNE) is a multi-node cabled ocean observatory linked by 818 kilometers of powered fiber optic cable off-shore from Vancouver Island across the northern Juan de Fuca tectonic plate. It includes a Data Management and Archive Station (DMAS) at the University of Victoria (UVic) and a shore station at Port Alberni, BC, Canada. The core of the network consists of 6 branching units, 6 node stations, 13 junction boxes and more than 130 instruments. In this paper, we explore the costs and benefits of constructing a simulator for NEPTUNE using the OMNeT++ simulation platform---a C++ based discrete-event simulator. In this context, we present the design and implementation of a simple simulator that can work with a variety of configurations of instruments, where the instruments are connected to DMAS via junction boxes and branching units, and generate TCP and UDP traffic following certain patterns. The simulator is designed for supporting \emph{what-if} scenario analysis, particularly with respect to system evaluation and discovery of limits associated with network traffic behaviors. Our study reveals that, although building the simulator in OMNeT++ has many advantages such as ease of tuning and calibration, capturing sufficient details regarding the working behavior of the actual NEPTUNE environment is still challenging. A survey of alternative tools, including NS-2/NS-3, OPNET, JiST/SWANS, J-Sim, SSFNet, and Qualnet reveals that these nuances would not be any less challenging within these simulation environments. / Graduate
14

An evaluation of management techniques for SONET/SDH Telecommunication networks /

Lim, Wee Shoong. Unknown Date (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, 2004. / Thesis Advisor(s): John C. McEachen. Includes bibliographical references (p. 51-52). Also available online.
15

A performance analysis of management information due to data traffic provisioning in a SONET/SDH communications network /

Tay, Yeong Kiang Winston. January 2005 (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, June 2005. / Thesis Advisor(s): John C. McEachen. Includes bibliographical references (p. 55-56). Also available online.
16

TRUE UNMANNED TELEMETRY COLLECTION USING OC-12 NETWORK DATA FORWARDING

Bullers, Bill 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The cost of telemetry collection is significantly reduced by unmanned store and forward systems made possible using 622MHz OC-12 networks. Networks are readily available to telemetry system architects. The in-band control of remote unmanned collection platforms is handled through a Java browser interface. Data from many telemetry channels are collected and temporarily stored on a digital disk system designed around the OC-12 network. The I/O, storage, and network components are configured, set, and initialized remotely. Recordings are started and stopped on command and can be made round-the-clock. Files of stored, time stamped data are delivered at the rate of OC-12 to a distribution center.
17

WEST COST SHALLOW WATER UNDERSEA WARFARE TRAINING RANGE

Reid, Robert 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Undersea warfare (USW) was perceived as a large-area, deep-water operation in the past therefore Fleet USW training ranges were designed to meet these requirements. Currently the bigger threat is the likelihood of regional conflict throughout the world by aggressive nations in littoral waters. The U.S. Navy must stand ready to respond to these regional conflicts when national interests are threatened. Consequently, naval forces must train to operate in the littoral environments where such regional conflicts are likely to occur. The West Cost Shallow Water Undersea Warfare Training Range (WC SWUWTR) is being developed to provide this training.
18

Jitter and Wander Reduction for a SONET DS3 Desynchronizer Using Predictive Fuzzy Control

Stanton, Kevin Blythe 01 January 1996 (has links)
Excessive high-frequency jitter or low-frequency wander can create problems within synchronous transmission systems and must be kept within limits to ensure reliable network operation. The emerging Synchronous Optical NETwork (SONET) introduces additional challenges for jitter and wander attenuation equipment (called desynchronizers) when used to carry payloads from the existing Plesiochronous Digital Hierarchy (PDH), such as the DS3. The difficulty is primarily due to the large phase transients resulting from the pointer-based justification technique employed by SONET (called Pointer Justification Events or PJEs). While some previous desynchronization techniques consider the buffer level in their control actions, none has explicitly considered wander generation. Instead, compliance with jitter, wander, and buffer-size constraints have typically been met implicitly--through testing and tuning of the Phase Locked Loop (PLL) controller. We investigated a fuzzy/rule-based solution to this desynchronization/constraint-satisfaction problem. But rather than mapping the input state to an action, as is done in standard fuzzy logic, our controller maps a state and a candidate action to a desired result. In other words, this control paradigm employs prediction to evaluate which of a set of candidate actions would result in the "best" predicted performance. Before the controller could predict an action's affect on buffer and wander levels, appropriate models were required. The model of the buffer is simply the integral of the frequency difference between the input and output of the PLL, and a novel MTIE Constraint Envelope technique was developed to evaluate future wander performance. We show that a predictive knowledge-based controller is capable of achieving the following three objectives: (1) Reduce jitter implicitly by avoiding unnecessary frequency changes such that the jitter limits specified in relevant standards are met, (2) Explicitly satisfy both buffer-level and wander (MTIE) constraints by trading off performance in one to meet the hard limit of the other, (3) When both buffer-level and wander constraints are in danger of violation and cannot be satisfied simultaneously, maintain the preferred constraint by sacrificing the other. We also show that the computation required for this control algorithm is easily within the reach of modern microprocessors.
19

Hybrid switching : converging packet and TDM flows in a single platform

Parajuli, Roshan 25 February 2009
Optical fibers have brought fast and reliable data transmission to todays network. The immense fiber build-out over the last few years has generated a wide array of new access technologies, transport and network protocols, and next-generation services in the Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). All these different technologies, protocols, and services were introduced to address particular telecommunication needs. To remain competitive in the market, the service providers must offer most of these services, while maintaining their own profitability. However, offering a large variety of equipment, protocols, and services posses a big challenge for service carriers because it requires a huge investment in different technology platforms, lots of training of staff, and the management of all these networks.<p> In todays network, service providers use SONET (Synchronous Optical NETwork) as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily designed to carry voice traffic from telephone networks. However, with the explosion of traffic in the Internet, the same SONET based TDM network is optimized to support increasing demand for packet based Internet network services (data, voice, video, teleconference etc.) at access networks and LANs. Therefore the service providers need to support their Internet Protocol (IP) infrastructure as well as in the legacy telephony infrastructure. Supporting both TDM and packet services in the present condition needs multilayer operations which is complex, expensive, and difficult to manage. A hybrid switch is a novel architecture that combines packets (IP) and TDM switching in a unified access platform and provides seamless integration of access networks and LANs with MAN/WAN networks. The ability to fully integrate these two capabilities in a single chassis will allow service providers to deploy a more cost effective and flexible architecture that can support a variety of different services.<p> This thesis develops a hybrid switch which is capable of offering bundled services for TDM switching and packet routing. This is done by dividing the switchs bandwidth into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for routing the data and controlling the switchs resources. The switch is a TDM based architecture which allows each switchs port to be independently configured for any mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch allows service providers to simplify their edge networks by consolidating the number of separate boxes needed to provide fast and reliable access. This switch also reduces the number of network management systems needed, and decreases the resources needed to install, provision and maintain the network because of its ability to collapse two network layers into one platform.<p> The scope of this thesis includes system architecture, logic implementation, and verification testing, and performance evaluation of the hybrid switch. The architecture consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar. The crossbar setup and channel assignments at ingress port are done by the arbiter. The design was tested by simulation and the hardware cost was estimated. The performance results showed that the switch is non-blocking, provide differentiated service, and has an overall effective throughput of 80%. This result is a significant step towards the goal of building a switch that can support multiprotocol and provide different network capabilities into one platform. The long-term goal of this project is to develop a prototype of the hybrid switch with broadband capability.
20

Hybrid switching : converging packet and TDM flows in a single platform

Parajuli, Roshan 25 February 2009 (has links)
Optical fibers have brought fast and reliable data transmission to todays network. The immense fiber build-out over the last few years has generated a wide array of new access technologies, transport and network protocols, and next-generation services in the Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). All these different technologies, protocols, and services were introduced to address particular telecommunication needs. To remain competitive in the market, the service providers must offer most of these services, while maintaining their own profitability. However, offering a large variety of equipment, protocols, and services posses a big challenge for service carriers because it requires a huge investment in different technology platforms, lots of training of staff, and the management of all these networks.<p> In todays network, service providers use SONET (Synchronous Optical NETwork) as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily designed to carry voice traffic from telephone networks. However, with the explosion of traffic in the Internet, the same SONET based TDM network is optimized to support increasing demand for packet based Internet network services (data, voice, video, teleconference etc.) at access networks and LANs. Therefore the service providers need to support their Internet Protocol (IP) infrastructure as well as in the legacy telephony infrastructure. Supporting both TDM and packet services in the present condition needs multilayer operations which is complex, expensive, and difficult to manage. A hybrid switch is a novel architecture that combines packets (IP) and TDM switching in a unified access platform and provides seamless integration of access networks and LANs with MAN/WAN networks. The ability to fully integrate these two capabilities in a single chassis will allow service providers to deploy a more cost effective and flexible architecture that can support a variety of different services.<p> This thesis develops a hybrid switch which is capable of offering bundled services for TDM switching and packet routing. This is done by dividing the switchs bandwidth into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for routing the data and controlling the switchs resources. The switch is a TDM based architecture which allows each switchs port to be independently configured for any mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch allows service providers to simplify their edge networks by consolidating the number of separate boxes needed to provide fast and reliable access. This switch also reduces the number of network management systems needed, and decreases the resources needed to install, provision and maintain the network because of its ability to collapse two network layers into one platform.<p> The scope of this thesis includes system architecture, logic implementation, and verification testing, and performance evaluation of the hybrid switch. The architecture consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar. The crossbar setup and channel assignments at ingress port are done by the arbiter. The design was tested by simulation and the hardware cost was estimated. The performance results showed that the switch is non-blocking, provide differentiated service, and has an overall effective throughput of 80%. This result is a significant step towards the goal of building a switch that can support multiprotocol and provide different network capabilities into one platform. The long-term goal of this project is to develop a prototype of the hybrid switch with broadband capability.

Page generated in 0.0173 seconds