• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Building and experimentally evaluating a smart antenna for low power wireless communication

Öström, Erik January 2010 (has links)
<p>In wireless communication there is commonly much unnecessary communication made in directions not pointing towards the recipient. Normally omni directional antennas are being used which sends the same amount of energy in all directions equally. This waste of energy reduces the lifetime of battery powered units and causes more traffic collisions than necessary. One way of minimizing this wasted energy and traffic collisions, is to use another type of antenna called “smart antenna”. These antennas can use selectable radiation patterns depending on the situation and thus drastically minimize the unnecessary energy waste. Smart antennas also provide the ability to sense the direction of incoming signals which is favorable for physical layout mapping such as orientation.</p><p>This thesis presents the prototyping of a new type of smart antenna called the SPIDA smart antenna. This antenna is a cheap to produce smart antenna designed for the 2.4 GHz frequency band. The SPIDA smart antenna can use sixty-four different signal patterns with the control of six separate directional modes, amongst these patterns are six single direction patterns, an omni-directional signal pattern and fifty-six combi-direction patterns. The thesis presents complete building instructions, evaluation data and functional drivers for the SPIDA smart antenna.</p>
2

Building and experimentally evaluating a smart antenna for low power wireless communication

Öström, Erik January 2010 (has links)
In wireless communication there is commonly much unnecessary communication made in directions not pointing towards the recipient. Normally omni directional antennas are being used which sends the same amount of energy in all directions equally. This waste of energy reduces the lifetime of battery powered units and causes more traffic collisions than necessary. One way of minimizing this wasted energy and traffic collisions, is to use another type of antenna called “smart antenna”. These antennas can use selectable radiation patterns depending on the situation and thus drastically minimize the unnecessary energy waste. Smart antennas also provide the ability to sense the direction of incoming signals which is favorable for physical layout mapping such as orientation. This thesis presents the prototyping of a new type of smart antenna called the SPIDA smart antenna. This antenna is a cheap to produce smart antenna designed for the 2.4 GHz frequency band. The SPIDA smart antenna can use sixty-four different signal patterns with the control of six separate directional modes, amongst these patterns are six single direction patterns, an omni-directional signal pattern and fifty-six combi-direction patterns. The thesis presents complete building instructions, evaluation data and functional drivers for the SPIDA smart antenna.
3

BUILDING AND EXPERIMENTALLYEVALUATING A SMART ANTENNA FOR LOWPOWER WIRELESS COMMUNICATION

Öström, Erik January 2010 (has links)
<p>In wireless communication there is commonly much unnecessarycommunication made in directions not pointing towards the recipient. Normallyomni directional antennas are being used which sends the same amount ofenergy in all directions equally. This waste of energy reduces the lifetime ofbattery powered units and causes more traffic collisions than necessary. Oneway of minimizing this wasted energy and traffic collisions, is to use anothertype of antenna called “smart antenna”. These antennas can use selectableradiation patterns depending on the situation and thus drastically minimize theunnecessary energy waste. Smart antennas also provide the ability to sense thedirection of incoming signals which is favorable for physical layout mappingsuch as orientation.This thesis presents the prototyping of a new type of smart antenna called theSPIDA smart antenna. This antenna is a cheap to produce smart antennadesigned for the 2.4 GHz frequency band. The SPIDA smart antenna can usesixty-four different signal patterns with the control of six separate directionalmodes, amongst these patterns are six single direction patterns, an omnidirectionalsignal pattern and fifty-six combi-direction patterns. The thesispresents complete building instructions, evaluation data and functional driversfor the SPIDA smart antenna.</p>
4

BUILDING AND EXPERIMENTALLYEVALUATING A SMART ANTENNA FOR LOWPOWER WIRELESS COMMUNICATION

Öström, Erik January 2010 (has links)
In wireless communication there is commonly much unnecessarycommunication made in directions not pointing towards the recipient. Normallyomni directional antennas are being used which sends the same amount ofenergy in all directions equally. This waste of energy reduces the lifetime ofbattery powered units and causes more traffic collisions than necessary. Oneway of minimizing this wasted energy and traffic collisions, is to use anothertype of antenna called “smart antenna”. These antennas can use selectableradiation patterns depending on the situation and thus drastically minimize theunnecessary energy waste. Smart antennas also provide the ability to sense thedirection of incoming signals which is favorable for physical layout mappingsuch as orientation.This thesis presents the prototyping of a new type of smart antenna called theSPIDA smart antenna. This antenna is a cheap to produce smart antennadesigned for the 2.4 GHz frequency band. The SPIDA smart antenna can usesixty-four different signal patterns with the control of six separate directionalmodes, amongst these patterns are six single direction patterns, an omnidirectionalsignal pattern and fifty-six combi-direction patterns. The thesispresents complete building instructions, evaluation data and functional driversfor the SPIDA smart antenna.

Page generated in 0.0205 seconds