• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Subduction related crustal and mantle deformations and their implications for plate dynamics

Okeler, Ahmet 11 1900 (has links)
Ocean-continent convergence and subsequent continental collision are responsible for continental growth, mountain building, and severe tectonic events including volcanic eruptions and earthquake activity. They are also key driving forces behind the extensive thermal and compositional heterogeneities at crustal and mantle depths. Active subduction along the Calabrian Arc in southern Italy and the Hellenic Arc are examples of such collisional tectonics. The first part of this thesis examines the subduction related deformations within the crust beneath the southern Apennines. By modeling regional surface wave recordings of the largest temporary deployment in the southern Apennines, a lower-crustal/upper-mantle low-velocity volume extending down to 50 km beneath the mountain chain is identified. The magnitude (~ 0.4 km/s slower) and anisotropic nature (~ 10%) of the anomaly suggest the presence of hot and partially molten emplacement that may extend into the upper-crust towards Mt. Vulture, a once active volcano. Since the Apulian basement units are deformed during the compressional and consequent extensional events, our observations favor the ``thick-skin'' tectonic growth model for the region. In the deeper mantle, active processes are thermodynamically imprinted on the depth and strength of the phase transitions. This thesis examines more than 15000 SS precursors and provides the present-day reflectivity structure and topography associated with these phase transitions. Through case studies I present ample evidence for both slab penetration into the lower mantle (beneath the Hellenic Arc, Kurile Island and South America) and slab stagnation at the bottom of the Mantle Transition Zone (beneath the Tyrrhenian Sea and eastern China). Key findings include (1) thermal anomalies (~ 200 K) at the base of the MTZ, which represent the deep source for Cenozoic European Rift Zone, Mount Etna and Mount Cameroon volcanism, (2) significant depressions (by 20-40 km) at the bottom of the Mantle Transition Zone beneath subducting slabs, (3) a strong 520-km reflector near subducting slabs, (4) a weak and elevated (15-25 km) 410-km reflector within active deformation zones, (5) strong lower mantle reflectors (~ 900 km) while slabs penetrate into the lower mantle, and (6) consistency between the topography of a 300-km reflector and an exothermic phase transformation. / Geophysics
2

Subduction related crustal and mantle deformations and their implications for plate dynamics

Okeler, Ahmet Unknown Date
No description available.
3

Seismic Imaging of the Global Asthenosphere using SS Precursors

Sun, Shuyang 21 September 2023 (has links)
The asthenosphere, a weak layer beneath the rigid lithosphere, plays a fundamental role in the operation of plate tectonics and mantle convection. While this layer is often characterized by low seismic velocity and high seismic attenuation, the global structure of the asthenosphere remains poorly understood. In this dissertation, twelve years of SS precursors reflected off the top and bottom of the asthenosphere, namely, the LAB and the 220-km discontinuity, are processed to investigate the boundaries of the asthenosphere at a global scale. Finite-frequency sensitivities are used in tomography to account for wave diffraction effects that cannot be modeled in global ray-theoretical tomography. Strong SS precursors reflected off the LAB and the 220-km discontinuity are observed across the global oceans and continents. In oceanic regions, the LAB is characterized by a large velocity drop of about 12.5%, which can be explained by 1.5%-2% partial melt in the oceanic asthenosphere. The depth of the Lithosphere Asthenosphere Boundary is about 120 km, and its average depth is independent of seafloor age. This observation supports the existence of a constant-thickness plate in the global oceans. The base of the asthenosphere is imaged at a depth of about 250 km in both oceanic and continental areas, with a velocity jump of about ∼ 7% across the interface. This finding suggests that the asthenosphere in oceanic and continental regions share the same defining mechanism. The depth perturbations of the oceanic 220-km discontinuity roughly follow the seafloor age contours. The 220-km topography is smoother beneath slower-spreading seafloors while it becomes rougher beneath faster-spreading seafloors. In addition, the roughness of the 220-km discontinuity increases rapidly with spreading rate at slow spreading seafloors, whereas the increase in roughness is much slower at fast spreading seafloors. This observation indicates that the thermal and compositional structures of seafloors formed at spreading centers may have a long-lasting impact on asthenospheric convections. In continental regions, a broad correlation is observed between the 220-km discontinuity depth structure and surface tectonics. For example, the 220-km discontinuity depth is shallower along the southern border of the Eurasian plate as well as the Pacific subduction zones. However, there is no apparent correlation between 3-D seismic wavespeed in the upper mantle and the depths of the 220-km discontinuity, indicating that secular cooling has minimum impact on the base of the asthenosphere. / Doctor of Philosophy / In classic plate tectonic theory, the outermost shell of the Earth consists of a small number of rigid plates (lithosphere) moving horizontally on the mechanically weak asthenosphere. In the classic half space cooling (HSC) model, the lithosphere is formed by gradual cooling of the hot mantle. Therefore, the thickness of the plate depends on the age of the seafloor. The problem with the HSC model is that bathymetry and heat flow measurements at old seafloors do not follow its predicted age dependence. A modified theory, called plate cooling model, can better explain those geophysical observations by assuming additional heat at the base of an oceanic plate with a constant thickness of about 125 km. However, such a constant-thickness plate has not been observed in seismology. In this thesis, the asthenosphere boundaries are imaged using a global dataset of seismic waves reflected off the Earth's internal boundaries. Strong reflections from the top of the asthenosphere are observed across all major oceans. The amplitudes of the SS precursors can be explained by 1.5%-2% of partial melt in the asthenosphere. The average boundary depths are independent of seafloor age, and this observation supports the existence of a constant-thickness plate in the global oceans with a complex origin. The 220-km discontinuity, also called the Lehmann Discontinuity, was incorporated in the Preliminary Reference Earth Model in the 1980's to represent the base of the asthenosphere. However, the presence and nature of this boundary have remained controversial, particularly in the oceanic regions. In contrast to many studies which suggest the 220-km discontinuity does not exist in the global oceans, SS precursors reflected from this interface are observed across the oceanic regions in this thesis. Furthermore, there is a positive correlation between the topography of the 220-km discontinuity and seafloor spreading rate. Specifically, the 220-km discontinuity is smoother beneath slower-spreading seafloors and much rougher beneath faster-spreading seafloors. In addition, the roughness increases faster at slowerspreading seafloors while much more gradual at faster-spreading seafloors. This indicates a close connection between seafloor spreading and mantle convections in the asthenosphere, and seafloors have permanent memories of their birth places. Different melting processes at slow and fast spreading centers produce seafloors with different physical and chemical properties, modulating convections in the asthenosphere and ultimately shaping the topography of the 220-km discontinuity. Reflections from the 220-km discontinuity are also observed across the global continental regions. In addition, the 220-km discontinuity beneath the continents is comparable to that under oceanic regions in terms of their average depth (∼ 250 km) and velocity contrast across the discontinuity (∼ 7%). In continental regions, there is a general connection between the 220-km depth structure and plate tectonics. For example, the boundary is shallower along the southern border of the Eurasian plate from the Mediterranean region to East Asia where mountain belts were formed as a result of collision between the Eurasian plate and the Nubian, Arabian and Indian plates. Depth perturbations of the 220-km discontinuity are also observed along the Pacific subduction zones including the Cascadia Subduction Zone, Peru-Chile Trench and Japan-Kuril Kamchatka Trench. In addition, depth anomalies are mapped in the interior of continents, for example, along the foothills of high topography in the interior of the Eurasian plate, which may be controlled by far-field convection associated with the convergent processes at the plate boundaries.

Page generated in 0.0457 seconds