• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1049
  • 85
  • 80
  • 74
  • 17
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 1780
  • 459
  • 390
  • 331
  • 181
  • 180
  • 178
  • 160
  • 157
  • 156
  • 149
  • 146
  • 142
  • 119
  • 111
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Prominences and magnetic activity on young single and binary stars

Dunstone, Nicholas J. January 2008 (has links)
In this thesis I study the magnetic activity of young stars via observations of stellar prominences on single stars and by applying the Zeeman Doppler imaging (ZDI) technique to map the magnetic fields and measure differential rotation of a young binary system. Stellar prominences can be observed as absorption transients in the rotationally broadened chromospheric lines of rapidly rotating stars. Observations of Speedy Mic(K3V) reveal a densely packed prominence system at heights far above the stellar co-rotation radius. Further observations were used to estimate prominence column densities and masses. From very high signal-to-noise observations, loops of emission are found that trace the path of prominences seen transiting the stellar disc. I also present what appears to be the first observation of an erupting stellar prominence on AB Doradus (K0V). I modify an existing ZDI code so that it can recover the magnetic maps of a binary system. The new code is applied to observations of the pre-main sequence binary system HD 155555 (G5IV+K0IV). The radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes and rings of azimuthal field present on both stars. The evolution of the relative field strengths between observations in 2004 and 2007 could be indicative of a magnetic activity cycle. I adapt the sheared image technique for measuring differential rotation parameters to the binary case. Both stellar components of HD 155555 are found to have rates of differential rotation similar to those of the same spectral type main sequence single stars. This is in apparent conflict with previous work on evolved binary systems where low rates of differential rotation were found, leading to the suggestion of suppression by binary tidal forces. I find that the depth of convection zone alone can likely explain the differential rotation results without invoking tidal forces.
522

Star formation across the galaxy : observations and modelling of the spectral energy distributions of young stars

Robitaille, Thomas P. January 2009 (has links)
In the last few decades, the emergence of large-scale infrared surveys has led to a revolution in the study of star formation. In particular, NASA’s Spitzer Space Telescope has recently carried out mid- and far-infrared observations of numerous star formation regions with unprecedented resolution and sensitivity, and has uncovered thousands of forming stars. In combination with present and future large-scale near-infrared and sub-mm surveys, spectral energy distributions from near-infrared to mm wavelengths will be available for these thousands of young stars. Never before has there been such a wealth of multi-wavelength data for so many young stars. Traditional techniques for studying the physical properties of young stars through their spectral energy distributions have usually focused either on the analysis of many sources using simple observational diagnostics such as colours or spectral indices, or on the analysis of a few sources through the detailed modelling of their full spectral energy distributions. The work presented in the first part of this thesis aims to bridge these two techniques through the efficient modelling of the spectral energy distributions of many young stars. In particular, the technique developed for this work makes it straightforward to find out how well different physical parameters are constrained, whether any parameters are degenerate, and whether additional data would resolve the degeneracies. In the second part of this thesis, a census of intrinsically red sources observed by Spitzer in the Galactic plane is presented, including a catalogue of over 11,000 likely young stellar objects. This sample of sources is the largest uniformly selected sample of young stars to date, and effectively provides a map of the sites of star formation in the mid-plane of the Milky-Way. In parallel, this census has uncovered over 7,000 candidate asymptotic giant branch stars, of which over 1,000 are variable at 4.5 or 8.0 microns.
523

The evolution of neutron star magnetic fields

張承民, Zhang, Chengmin. January 2000 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
524

Short gamma-ray bursts resulting from phase-induced collapse of neutron stars

Tian, Xiaolei., 田小磊. January 2008 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
525

Properties of neutron stars in the relativistic mean field theory

姚昌銓, Yao, Cheong-chuen. January 1996 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
526

Post-common-envelope binaries : an observational study of EG UMa and related systems

Bleach, James N. January 2001 (has links)
No description available.
527

An observational study of the dynamics of molecular cloud cores.

Walker, Christopher Kidd. January 1988 (has links)
How are stars formed? This is one of the most fundamental questions in astronomy. It is therefore ironic that to date, no object has been unambiguously identified as a true protostar; an object which derives the bulk of its luminosity from accretion. While this may be ironic, it is not surprising. Stars are believed to form as a result of the gravitational collapse of a portion of a molecular cloud. Theory predicts that the cloud core in which the star is formed will be cold, dense and possess hundreds of magnitudes of extinction, rendering it opaque at visible and near-infrared wavelengths. Continuum observations at far-infrared, submillimeter, and millimeter wavelengths can be used to identify candidate protostars, but spectroscopic observations are needed to detect infall. The difficulties arise when there are systematic velocity fields present in the cloud core which are not the result of infall, such as would be produced by either a molecular outflow or rotation. In this dissertation we use both observations and theoretical models to sort through these problems and develop a strategy which could be used to identify and study protostars.
528

Dense gas in the Monoceros OB1 dark cloud and its relationship to star formation.

Wolf, Grace Annamarie. January 1992 (has links)
We have conducted a CS survey of the 10 outflows and 30 IRAS sources identified by Margulis (1987) in the Mon OB1 dark cloud to study the relationship between outflows, YSOs, and dense cores in this cloud. We have found that the CS J = 2 → 1 transition traces a large portion of the dense, low-velocity components of the outflows in Mon OB1. We find the mass of this component to be nearly an order of magnitude greater than previous estimates of the outflow "core" component. We detected little CS gas around the quiescent sources in this cloud. CS 2 → 1 temperatures and integrated intensities are 2 to 7 and 2 to 14 times higher, respectively, in the vicinities of IRAS sources associated with outflow activity than about the quiescent sources. This implies CS abundances, temperatures and/or densities are enhanced in regions where outflows impact the ambient cloud. The CS 2 → 1 emission is concentrated in two regions encompassing 6 of the 10 previously identified outflows in this cloud. Four of these six outflows are identifiable in CS. Two, previously identified as monopolar outflows, exhibit bipolar structure in CS. We have detected the CS J = 5 → 4 transition in the vicinity of 4 of the 10 outflows in this cloud, and around none of the quiescent IRAS sources. The CS 5 → 4 emission is extended around two of the outflow sources and has been mapped in these regions. CS J = 7 → 6 emission has been mapped about the brightest outflow source in this cloud. The morphology of the 7 → 6 region suggests it may have been part of the collimating structure for the outflow associated with this sources. The velocity structure and binding energies of the 5 → 4 and 7 → 6 cores suggest the outflows are disrupting these cores. The addition of the low-velocity CS outflow component to previous estimates of outflow energetics implies multiple generations of outflows need not be required to support this cloud against collapse. Our results neither support nor rule out the existence of fossil outflows in this cloud. A full-cloud, unbiased survey is required to search for such outflows.
529

Observational constraints on Be/x-ray binary models

Negueruela, Ignacio January 1997 (has links)
No description available.
530

Irradiation of the secondary star in cataclysmic variable stars

Davey, Stephen January 1994 (has links)
No description available.

Page generated in 0.0149 seconds