• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1405
  • 720
  • 276
  • 172
  • 97
  • 59
  • 41
  • 36
  • 25
  • 17
  • 10
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 3380
  • 3380
  • 711
  • 690
  • 689
  • 559
  • 444
  • 396
  • 388
  • 378
  • 341
  • 329
  • 320
  • 315
  • 298
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Controlling Cell Density by Micropatterning Regulates Smad Signalling and Mesendoderm Differentiation of Human Embryonic Stem Cells

Lee, Lawrence 24 February 2009 (has links)
Human embryonic stem cells (hESC) present a potentially unlimited supply of hematopoietic progenitors for cell-based therapies. However, current protocols for generating these progenitors typically also generate undesired cell types due to imprecise control of the hESC microenvironment and poor understanding of the signalling networks regulating mesoderm differentiation (the germ layer from which hematopoietic cells emerge). This report demonstrates that activation of the downstream effectors of Activin/Nodal and bone morphogenetic protein (BMP) signalling (Smad2 (composite of Sma (smaller) and Mad (mothers against decapentaplegic) and Smad1, respectively) are both required for mesoderm differentiation. It is further shown that microcontact printing-mediated control of hESC colony size creates local microenvironments that guide differentiation, via a Smad1-dependent mechanism, preferentially towards the mesoderm lineage. These findings demonstrate the need for precise control of the microenvironment in order to effectively guide hESC differentiation to produce specific cell types for potential therapeutic applications.
342

Endocrine Regulation of Stem Cells and the Niche in Adult Mammopoiesis

Joshi, Purna 12 December 2013 (has links)
Adult mammopoiesis occurs in close synchronization with reproductive development when the hypothalamic-pituitary-ovarian axis delivers integral systemic hormone cues to propel mammary morphogenesis during puberty, remodeling during reproductive cycles and functional differentiation following pregnancy. While hormones remain the driving force behind normal glandular development, increased life-time hormone exposure is a strong risk factor for breast cancer. Breast cancer heterogeneity has been attributed to different cells of origin and/or different mutation repertoires. Stem/progenitor cells are intensely investigated as cells of origin given their regenerative and self-renewal properties that provide conceivable advantage in cancer. Although hormones have a fundamental influence in breast cancer, their capacity to regulate stem/progenitor cells was unknown, and presents the central directive in this thesis. Employing mouse models, we show that mammary epithelial subpopulations and in particular, stem cells, are highly responsive to ovarian hormones and depend on key molecular events. A progesterone peak during the luteal phase of reproductive cycles results in a significant increase in stem cell-enriched basal cells and an expansion of stem cells measured by in vivo transplantation assays, with rapid development of lobuloalveoli. Progesterone was found to stimulate expression of mitogenic ligands, RANKL and Wnt4, in ER+PR+ luminal epithelial niche cells concomitant with increased expression of their receptors and target genes in the ER-PR- basal stem cell population, suggesting a cross-talk between luminal and basal cells that elicits stem cell expansion within the niche. The requirement of RANKL signaling for hormone-induced mammary stem cell dynamics was further explored utilizing mice deficient for its receptor, RANK, and by pharmacological inhibition of RANKL. Disruption of RANKL/RANK signaling resulted in abrogated activation of the basal stem cell-enriched population and alveolar progenitor cells in response to progesterone. This was accompanied by a marked reduction in cell proliferation, cell cycle regulators, alveolar lineage determinants and notably, in epithelial Wnt responsiveness. Thus, progesterone orchestrates a series of molecular events in the mammary stem cell niche where RANK is effectively positioned to deliver instructive signals to stem cells, culminating in stem cell recruitment and alveolar regeneration, processes which when deregulated have considerable potential to promote breast cancer pathogenesis.
343

Reprogramming Mouse Glioma Stem Cells with Defined Factors

DiLabio, Julia Alexandra Maria 27 November 2013 (has links)
This thesis shows that p53-deficient mouse glioma brain tumour stem cells (BTSCs), which fail to express pluripotency factors, can be reprogrammed with specific transcription factors to generate iPS cell lines (GNS-iPS) expressing endogenous pluripotency factors (Nanog, Oct4, and Rex1). GNS-iPS cell lines formed embryoid bodies (EBs) in vitro and undifferentiated growths in vivo that phenotypically did not resemble tumours derived from non-reprogrammed BTSCs. EBs formed from one GNS-iPS cell line expressed markers of mesoderm, endoderm, and ectoderm. Tumours produced from GNS-iPS cells had reduced astrocytic marker (GFAP) expression compared to those generated from control iPS cell lines or non-reprogrammed BTSCs. Preliminary results suggest that the reprogrammed cells can be re-differentiated into cells that show neural precursor phenotype. These findings suggest that BTSCs can acquire aspects of the pluripotent state with a defined set of transcription factors, opening the door for further exploration of reprogramming strategies to attenuate the cancer phenotype.
344

UNVEILING THE METABOLIC NETWORK UNDERLYING MITOCHONDRIAL AND NUCLEAR METABOLISM IN A MODEL DIFFERENTIATING STEM CELL

Han, Sungwon 07 October 2013 (has links)
Participation of metabolism in stem cell differentiation has been largely disregarded until recently. Here, functional proteomics and metabolomics were performed to unveil the mitochondrial and nuclear metabolism during dimethyl sulfoxide (DMSO)-induced differentiation of P19 cells. DMSO-treated cells were shown to exhibit increased glycolytic enzymes activities and fuel pyruvate into oxidative phosphorylation. Subsequently, enzymes of electron transport chain also had elevated activities upon differentiation. These changes in mitochondrial metabolism were concomitant with increased mitochondrial biogenesis as PGC-1α expression was higher in the differentiated cells. To study nuclear metabolism, particular focus was placed on delineating a potential role of nuclear lactate dehydrogenase (LDH). Nuclear LDH was found to exhibit higher expression in pluripotent cells. NAD+ generated from LDH reaction was discovered to promote histone deacetylation via sirtuin-1 (SIRT1). Drastic alterations in mitochondrial and nuclear metabolism during differentiation point to a pivotal role of metabolism in deciding the final destination of stem cells.
345

Enhancing engraftment of islets of Langerhans and other cellular therapies for diabetes

McCall, Michael David Unknown Date
No description available.
346

Development of Environment-Responsive Hydrogels for the Delivery of Therapeutic Agents

Shi, Junbin 03 August 2012 (has links)
This thesis includes two parts related to hydrogels as therapeutically useful constructs: a biomimetic hydrogel carrying stem cells for bone regeneration and an acid-sensitive hydrogel carrying drugs for cancer therapy. In tissue engineering, one of the biggest difficulties is the control of stem cell fate on scaffolds. A biodegradable and cell attachable cross-linker was synthesized by one-step Michael additional reaction, and was used to fabricate a novel hydrogel to control the stem cell fate. For anti-cancer therapy, releasing drug on tumor cells or organs while having low effects on health cells under physiological conditions is a critical requirement. Two nature polymers are modified to achieve loading anti-cancer drug while forming hydrogels which can selectively release the drug in tumor environment by acid-sensitive linkages.
347

Controlling Cell Density by Micropatterning Regulates Smad Signalling and Mesendoderm Differentiation of Human Embryonic Stem Cells

Lee, Lawrence 24 February 2009 (has links)
Human embryonic stem cells (hESC) present a potentially unlimited supply of hematopoietic progenitors for cell-based therapies. However, current protocols for generating these progenitors typically also generate undesired cell types due to imprecise control of the hESC microenvironment and poor understanding of the signalling networks regulating mesoderm differentiation (the germ layer from which hematopoietic cells emerge). This report demonstrates that activation of the downstream effectors of Activin/Nodal and bone morphogenetic protein (BMP) signalling (Smad2 (composite of Sma (smaller) and Mad (mothers against decapentaplegic) and Smad1, respectively) are both required for mesoderm differentiation. It is further shown that microcontact printing-mediated control of hESC colony size creates local microenvironments that guide differentiation, via a Smad1-dependent mechanism, preferentially towards the mesoderm lineage. These findings demonstrate the need for precise control of the microenvironment in order to effectively guide hESC differentiation to produce specific cell types for potential therapeutic applications.
348

Reprogramming Mouse Glioma Stem Cells with Defined Factors

DiLabio, Julia Alexandra Maria 27 November 2013 (has links)
This thesis shows that p53-deficient mouse glioma brain tumour stem cells (BTSCs), which fail to express pluripotency factors, can be reprogrammed with specific transcription factors to generate iPS cell lines (GNS-iPS) expressing endogenous pluripotency factors (Nanog, Oct4, and Rex1). GNS-iPS cell lines formed embryoid bodies (EBs) in vitro and undifferentiated growths in vivo that phenotypically did not resemble tumours derived from non-reprogrammed BTSCs. EBs formed from one GNS-iPS cell line expressed markers of mesoderm, endoderm, and ectoderm. Tumours produced from GNS-iPS cells had reduced astrocytic marker (GFAP) expression compared to those generated from control iPS cell lines or non-reprogrammed BTSCs. Preliminary results suggest that the reprogrammed cells can be re-differentiated into cells that show neural precursor phenotype. These findings suggest that BTSCs can acquire aspects of the pluripotent state with a defined set of transcription factors, opening the door for further exploration of reprogramming strategies to attenuate the cancer phenotype.
349

Endocrine Regulation of Stem Cells and the Niche in Adult Mammopoiesis

Joshi, Purna 12 December 2013 (has links)
Adult mammopoiesis occurs in close synchronization with reproductive development when the hypothalamic-pituitary-ovarian axis delivers integral systemic hormone cues to propel mammary morphogenesis during puberty, remodeling during reproductive cycles and functional differentiation following pregnancy. While hormones remain the driving force behind normal glandular development, increased life-time hormone exposure is a strong risk factor for breast cancer. Breast cancer heterogeneity has been attributed to different cells of origin and/or different mutation repertoires. Stem/progenitor cells are intensely investigated as cells of origin given their regenerative and self-renewal properties that provide conceivable advantage in cancer. Although hormones have a fundamental influence in breast cancer, their capacity to regulate stem/progenitor cells was unknown, and presents the central directive in this thesis. Employing mouse models, we show that mammary epithelial subpopulations and in particular, stem cells, are highly responsive to ovarian hormones and depend on key molecular events. A progesterone peak during the luteal phase of reproductive cycles results in a significant increase in stem cell-enriched basal cells and an expansion of stem cells measured by in vivo transplantation assays, with rapid development of lobuloalveoli. Progesterone was found to stimulate expression of mitogenic ligands, RANKL and Wnt4, in ER+PR+ luminal epithelial niche cells concomitant with increased expression of their receptors and target genes in the ER-PR- basal stem cell population, suggesting a cross-talk between luminal and basal cells that elicits stem cell expansion within the niche. The requirement of RANKL signaling for hormone-induced mammary stem cell dynamics was further explored utilizing mice deficient for its receptor, RANK, and by pharmacological inhibition of RANKL. Disruption of RANKL/RANK signaling resulted in abrogated activation of the basal stem cell-enriched population and alveolar progenitor cells in response to progesterone. This was accompanied by a marked reduction in cell proliferation, cell cycle regulators, alveolar lineage determinants and notably, in epithelial Wnt responsiveness. Thus, progesterone orchestrates a series of molecular events in the mammary stem cell niche where RANK is effectively positioned to deliver instructive signals to stem cells, culminating in stem cell recruitment and alveolar regeneration, processes which when deregulated have considerable potential to promote breast cancer pathogenesis.
350

The development of extracellular matrix based neural stem cell transplants for treatment of traumatic brain injury

Tate, Matthew C. 08 1900 (has links)
No description available.

Page generated in 0.0459 seconds