• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1420
  • 720
  • 276
  • 173
  • 97
  • 59
  • 41
  • 36
  • 25
  • 17
  • 11
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 3400
  • 3400
  • 714
  • 691
  • 689
  • 560
  • 445
  • 398
  • 390
  • 380
  • 345
  • 330
  • 320
  • 318
  • 299
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

THE GENETIC REGULATION OF THE RESPONSE OF HEMATOPOIETIC STEM/PROGENITOR CELLS TO THE CYTOSTATIC AGENT HYDROXYUREA

Yates, Jeffrey Lynn 01 January 2006 (has links)
Cellular proliferation is a key characteristic of hematopoietic stem and progenitor cells (HSC/HPCs) that allows for the production of all blood cell lineages during an individuals lifetime. While this feature of stem cells is strictly regulated during steadystate and stress hematopoiesis, it also contributes to the development of myeloproliferative disorders, such as chronic myelogenous leukemia, essential thrombocythemia, and polycythemia vera. It should come as no surprise then, that common treatments for these diseases often target the proliferative nature of the dysfunctional HSC/HPCs. Thus, the identification of molecular determinants of cell cycle regulation associated with these disorders could serve as targets for novel therapies. Using the hematopoietic system of the inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), it was found that the HSC/HPCs of the long-lived B6 mouse strain were less susceptible to the cytostatic agent hydroxyurea (HU) than the short-lived D2 mouse strain. A quantitative trait locus (QTL) analysis revealed a region of proximal chromosome 7 that regulates this response to HU. Congenic mouse strains were generated and phenotypic analysis confirmed that the B6 and D2 loci confer a low and high sensitivity of the HSC/HPCs to HU, respectively. We then showed that while this response of the HSC/HPCs to HU is independent of their cell cycle status, the B6 allele of this QTL confers a proliferative advantage to bone marrow cells after bone marrow transplantation. Having shown that proximal chromosome 7 regulates the response of HSC/HPCs to HU, we found it necessary to characterize the gene and protein expression profiles in order to identify the responsible candidate genes. We first analyzed mRNA expression profiles of HPCs from the parental and congenic mouse strains using gene microarrays and found that four genes within the congenic interval were differentially expressed. Real-time PCR confirmed that the expression profile of only one gene, Ndufa3, is significantly different in HPCs of B6 and D2 mice. Concurrently, we assessed the protein expression profiles of HPC-enriched mononuclear cells. Significant differences were found between the cytoplasmic and nuclear fractions of both strains, with a skewing of protein expression towards the D2 congenic strain.
242

25 Hydroxycholesterol inhibits adipogenesis and expression of adipogenic transcripts in C3H10T1/2 mouse stem cells independent of hedgehog signalling mechanism

Moseti, Dorothy 15 June 2015 (has links)
This study was conducted to assess the effects of specific oxysterols on the adipogenic differentiation and expression of adipogenic transcripts in C3H10T1/2 mouse stem cells. In the first study, four oxysterols namely; 20S, 22R, 22S and 25 hydroxycholesterol (25-HC) were tested to determine which one best inhibits adipogenesis in C3H10T1/2 mouse stem cells. Adipogenic differentiation was induced using an adipogenic media (DMITro) consisting of dexamethasone (DEX), 3-isobutyl-1-methyl-xanthine (IBMX), insulin and troglitazone (Tro). Inhibition of adipogenesis was assessed by treatment of cells with DMITro+20S, 22R, 22S or 25-HC for six days. Oil red O pictures and gene expression analysis showed that 25-HC was more effective in inhibiting the expression of adipogenic genes compared to the other oxysterols. Further investigation of the mechanisms of action of 25-HC showed that the inhibitory effects of 25-HC on adipogenesis are not mediated by hedgehog signalling. / October 2015
243

Molecular analysis of putative haemopoietic gene products derived from murine embryonal stem cells

Baird, Janet W. January 2001 (has links)
No description available.
244

Expression of antisense RNA to investigate the interaction between unique and shared receptor subunits in the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor

Edwards, Jane Ann January 1999 (has links)
No description available.
245

Molecular Mechanisms of Myogenesis in Stem Cells

Ryan, Tammy 10 August 2011 (has links)
Embryonic stem cells (ESCs) represent a promising source of cells for cell replacement therapy in the context of muscle diseases; however, before ESC-based cell therapy can be translated to the clinic, we must learn to modulate cell-fate decisions in order to maximize the yield of myocytes from this systems. In order to gain a better understanding of the myogenic cell fate, we sought to define the molecular mechanisms underlying the specification and differentiation of ESCs into cardiac and skeletal muscle. More specifically, the central hypothesis of the thesis is that myogenic signalling cascades modulate cell fate via regulation of transcription factors. Retinoic acid (RA) is known to promote skeletal myogenesis, however the molecular basis for this remains unknown. We showed that RA expands the premyogenic progenitor population in mouse stem cells by directly activating pro-myogenic transcription factors such as Pax3 and Meox1. RA also acts indirectly by activating the pro-myogenic Wnt signalling cascade while simultaneously inhibiting the anti-myogenic influence of BMP4. This ultimately resulted in a significant enhancement of skeletal myogenesis. Furthermore, we showed that this effect was conserved in human embryonic stem cells, with implications for directed differentiation and cell therapy. The regulation of cardiomyogenesis by the Wnt pathway was also investigated. We identified a novel interaction between the cardiomyogenic transcription factor Nkx2.5 and the myosin phosphatase (MP) enzyme complex. Interaction with MP resulted in exclusion of Nkx2.5 from the nucleus and inhibition of its transcriptional activity. Finally, we showed that this interaction was modulated by phosphorylation of the Mypt1 subunit of MP by ROCK, downstream of Wnt3a. Treatment of differentiating mouse ESCs with Wnt3a resulted in exclusion of Nkx2.5 from the nucleus and a subsequent failure to undergo terminal differentiation into cardiomyocytes. This likely represents part of the molecular basis for Wnt-mediated inhibition of terminal differentiation of cardiomyocytes. Taken together, our results provide novel insight into the relationship between myogenic signalling cascades and downstream transcription factors and into how they function together to orchestrate the myogenic cell fate in stem cells.
246

Extracellular matrix based substrates for propagation of human pluripotent stem cells

Abraham, Sheena 16 February 2010 (has links)
In human pluripotent stem cell (hPSC) research and applications, the need for a culture system devoid of non-human components is crucial. Such a system should exhibit characteristics observed in conventional culture systems that have used mouse embryonic fibroblast feeders for hPSC self renewal without the requirement of excessive supplementation with growth factors. To achieve this, we focused on the identification and characterization of extracellular matrix (ECM) substrates for hPSC propagation. ECM substrates derived from mouse and human fibroblasts were assessed for their ability to support self-renewal of hPSCs. Characterization of hPSCs on ECM-based substrates demonstrated maintenance of pluripotent characteristics based on a) high nuclear-cytoplasmic ratio b) immunocytochemical analyses for pluripotent markers (Alkaline phosphatase, AP, Octamer Binding Transcription Factor-4, OCT4 and Specific surface embryonic antigen-4, SSEA4) c) in vitro differentiation potential by embryoid body formation d) Real time RT-PCR analysis for pluripotent and germ-layer specific markers and e) karyotype analysis for chromosome number. Compositional characterization of the ECM substrates using proteomic analysis identified some of the major constituents of the matrix that might contribute to hPSC self-renewal. Based on results from the proteomic analysis, combinatorial ECM substrates were formulated using commercially available proteins and evaluated for applicability in hPSC propagation. Extensive characterization of hPSC propagated on the ECM substrates suggest that a combination of heparan sulfate proteoglycan and fibronectin was sufficient for the promoting hPSC sef-renewal. Finally, an in-direct co-culture system utilizing microporous membranes coated with acellular substrates and a physically separated feeder layer was developed as a microenvironment for hPSC propagation. Real time conditioning of the growth medium and an ECM-based substrate for hPSC adhesion provides a synergy of the biochemical and biophysical cues necessary for hPSC self-renewal. hPSCs cultured in this system demonstrated equivalent pluripotent characteristics as those propagated in conventional culture systems, and provided opportunities for scale up without cell mixing. Overall, these studies could prove to be useful in the development of humanized propagation systems for the production of stable hPSCs and its derivatives for research and therapeutic applications.
247

Regulation of MITF and Brn2 in melanoma

Agkatsev, Sarina January 2014 (has links)
Melanoma is the most aggressive skin cancer with high recurrence and low survival rate. In addition to genetic mechanisms, resistance also arises from phenotypic heterogeneity in which a proportion of cells, the so-called melanoma stem or initiating cells, survive therapy. Due to a lack of reliable markers, however, there is still debate about the existence of these cells in melanoma. Consistent with phenotypic heterogeneity, previous observations in our laboratory have demonstrated that cells in melanoma can reversibly segregate in vivo into different subpopulations with different properties, such as differentiation or increased invasive capacity (potentially attributed to the existence of de-differentiated stem-like cells). To characterise these cells, a dual reporter lentiviral system was engineered, expressing fluorescent proteins under cell stage/phenotype-specific promoters. The promoters for the transcription factors POU3F2 (Brn2) (to mark de-differentiated cells) and the microphthalmia-associated transcription factor (MITF) (to mark proliferating and differentiated cells) were chosen. Lentivirally-transduced cells were used to screen a library of kinase inhibitors for their potential to affect promoter activity in vitro. The RhoA/ROCK pathway, known to contribute to invasion and metastases, was identified to play a role in Brn2 promoter activity and exhibited differential effects on both the MITF and Brn2 promoters in 501mel and SKmel28 cell lines. Through investigation of other signalling pathways involved in melanoma metastasis, we also identified the co-activator Mastermind-like 1 (MAML1), previously reported to act in the Notch pathway, as an activator of the Brn2 promoter via the transcription factor TCF3, and the MITF promoter through the lymphoid-enhancer binding factor 1 (LEF1). The effects of MAML1 on Brn2 and MITF promoter activity were potentiated by β-catenin. These findings provide new opportunities for the identification of therapeutic targets to prevent metastases formation in melanoma.
248

Production of canine hepatocyte-like cells from stem cell sources

Gow, Adam George January 2014 (has links)
The cost of drug development is high with many drugs failing during toxicity testing. This is a particular problem in veterinary medicine where the pharmaceutical market size is so small that it may not be economically viable to develop drugs. The liver and specifically hepatocytes have a crucial role in drug metabolism via oxidation by cytochrome enzymes (CYP), conjugation and excretion into the biliary system. This drug metabolism is unpredictable between species as each has unique CYP profiles. Furthermore there is breed variation of CYP profiles within the canine species. The ability to produce an in vitro source of canine hepatocytes to model drug metabolism in this species and in different breeds would greatly reduce the expense of candidate drug testing. If an unlimited supply could be produced in vitro this would reduce the number of animals required in pre-clinical testing. The aim of this thesis was to produce an in vitro supply of canine hepatocyte-like cells from stem cell sources, namely hepatic progenitor cells (HPC), mesenchymal stem cells (MSC) or induced pluripotent stem cells (iPSC). Cultures of canine primary hepatocytes were produced to use as a gold standard, but also to develop and refine tests of hepatocyte characterisation and function. A panel of primers was developed for use in real time polymerase chain reaction (PCR) as well as optimising tests for low density lipoprotein (LDL) and indocyanine green uptake, albumin production, periodic acid- Schiff staining for glycogen and CYP activity using a luciferase-based system. As primary hepatocytes rapidly lost their defining characteristics and function in vitro, methods of maintaining function using CYP inducers and culture substrates were assessed. Isodensity centrifugation and magnetic-activated cell sorting was employed to isolate HPCs. Selection of cells from the non-parenchymal cell fraction with stem cell marker Prominin 1 demonstrated that these were keratin 7 positive, a HPC marker. Cells morphologically consistent with HPC appeared and expanded in culture after 2 weeks. On passaging, these cells failed to continue expanding, despite plating onto collagen, laminin, SNL feeder cells or using Kubota’s medium (known to allow rapid expansion of rodent and human HPCs). Canine adipose (Ad-MSC) and bone marrow-derived mesenchymal stromal cells (BM-MSC) were isolated post mortem. These were characterised as CD45, 105 and STRO-1 positive, CD11b, 19 and 45 negative cells which could be differentiated into adipocytes, chondrocytes and osteocytes based on staining characteristics and relative gene expression. Protocols published for other species were used to differentiate both Ad-MSC and BM-MSC towards a hepatocyte phenotype. Although a dramatic change in morphology and a reduction in vimentin gene expression were noted, suggesting a loss of mesenchymal phenotype, these protocols did not induce a hepatocyte phenotype. Pre-treatment with 5-Aza-2′-deoxycytidine to cause DNA demethylation and valproic acid to inhibit histone deacetylation also failed to allow transdifferentiation. A polycistronic vector containing Oct-4, c-Myc, Sox2 and Klf4 was successfully transfected into canine epidermal keratinocyte progenitor cells which became alkaline phosphatase positive and assumed a morphology consistent with iPSC. After colony selection and expansion, PCR evidence of plasmid presence was lost, colony morphology changed, and alkaline phosphatase activity reduced, consistent with vector expression factor and pluripotency loss. Canine iPSCs produced by lentiviral method were then differentiated towards hepatocyte phenotype using a published protocol for mouse and human iPSC. These cells were then assessed for hepatocyte characteristics using the developed reagents and primers. These cells demonstrated increased gene expression and morphology consistent with differentiation towards a hepatocyte-like phenotype. This thesis demonstrates successful culture of canine primary hepatocytes and validation of tests of hepatocyte phenotype. This provides a basis for optimising primary hepatocyte function in vitro and assessment of the success of differentiation protocols on stem cell sources. Canine mesenchymal stromal cells do not appear to transdifferentiate towards a hepatocyte-like phenotype using published protocols for other species. Canine iPSC are a promising candidate for an in-vitro source of hepatocyte-like cells.
249

Dielectrophoretic study of human embryonic stem cells and their differentiated progeny

Velugotla, Srinivas January 2013 (has links)
This thesis describes for the first time, how the membrane capacitance of pluripotent human embryonic stem cells (H1, H9, RCM1) increases with their differentiation (H1-MSC, H9-MSC, RCM1-trophoblast) based on the literature review. The method used to determine membrane capacitance was dielectrophoresis (DEP), which is an electrokinetic technique capable of characterising and sorting cells without the need for antibody-based cell surface markers, magnetic beads, or other chemical tags. This finding has potential biomedical importance because human embryonic stem cell (hESCs) isolated from early blastocyst-stage embryos and differentiated progeny have been identified to be of possible use in drug screening and regenerative cell based therapeutic treatment. Current cell sorting methods require membrane surface markers that limit their applicability in stem cell therapeutics, a limitation that is either removed or reduced if DEP-based sorting was used. The work described in this thesis consists of the design, fabrication and testing of DEP based microfluidic devices for characterization and separation of human embryonic stem cells. The cells studied were human undifferentiated hESC lines (H1, H9, RCM1, RH1, and T8) and their differentiated progeny (H1-MSC, H9-MSC, RCM1-trophoblast, hES-MP). The cell membrane capacitance (Cm) of the cells was determined by measuring a parameter known as the DEP cross-over frequency (fxo), where the electrical polarisability of a cell equals that of its suspending electrolyte and so experiences no DEP force. The studies of hESC lines cultured from different sources indicate, on the basis of their similar Cm values, that they have similar membrane morphologies. The change in calculated Cm value upon differentiation of these hESCs indicates that changes occur in their membrane morphology, texturing and possibly of their membrane thickness. Subsequent enrichment of these hESCs from human dermal fibroblasts (hDFs) has been achieved based on fxo measurements. The results presented in this thesis confirm the existence, previously indicated in the literature, of distinctive parameters for undifferentiated and differentiating cells on which future application of DEP in hESC manufacturing can be based.
250

Characterizing the function of transcription factor 15 (Tcf15) in pluripotent cells

Lin, Chia-Yi January 2015 (has links)
Pluripotent embryonic stem (ES) cells are heterogeneous mixtures of naïve and lineage-primed states defined by distinct transcription factor expression profiles. However, the events that prime pluripotent cells for differentiation are not well understood. Id proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factors, contribute to pluripotency by blocking differentiation. Using Yeast-Two-Hybrid screening, our lab identified Tcf15 as an Id-regulated transcription factor. In this study, I first examined the expression of Tcf15 during differentiation in vitro and during early development in vivo in the mouse. Tcf15 expression is higher in primed pluripotent embryonic stem (ES) cells than in naïve ES cells or epiblast stem cells (EpiSCs). In addition, Tcf15 is expressed heterogeneously in ES cells and is also detected in the inner cell mass (ICM) of E4.5 mouse embryos. Expression of Tcf15 was upregulated during early stages of differentiation and downregulated before cells committed to any specific lineage. Using Tcf15-Venus reporter cells, I found that expression of Tcf15 is specifically associated with a novel subpopulation of ES cells primed for somatic lineages. Gain of function and loss of function studies were then performed to perturb Tcf15 expression in ES cells in order to assess the function of Tcf15 in self-renewal and during differentiation. An inducible Id-resistant form of Tcf15 accelerates somatic lineage commitment by maturating naïve pluripotent ES cells transit toward primed epiblast and later on epiblastderived somatic lineages whilst suppressing differentiation towards extraembryonic endoderm. Preliminary loss of function studies also suggest that down-regulation of Tcf15 may promote a naïve state within pluripotent cells. I investigated the mechanism by which Tcf15 expression becomes associated with the epiblast-primed state by identifying the upstream regulators and downstream targets of Tcf15. Tcf15 expression is dependent on FGF signalling. Microarray analysis identified that Tcf15 downregulates the naïve pluripotency determinant Nanog and upregulates the epiblast determinant Otx2. Taken together, our results suggest that Tcf15 acts in opposition to the pluripotency network to prime pluripotent cells towards differentiation.

Page generated in 0.091 seconds