• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

What causes the colour of diamonds?

Godfrey, Iain Stuart January 2014 (has links)
The research work presented in this thesis comprises an electron microscopy and spectroscopy study of crystal defects that relate to the occurrence of different colours in natural and synthetic diamonds. Two principal lines of investigation have been covered, each with its own objective. The first aims to identify the source of brown colour in natural and synthetic diamond and the second to ascertain the distribution of colour inducing point defects in synthetic diamond. An outline of both areas of research is given below.1) Brown colour in natural and synthetic diamondsColour is a physical property that can be very difficult to characterise in diamond and consequently it receives regular attention from scientists working in the gem industry. In this work, the crystal structures of brown and colourless natural type IIa diamonds are compared along with brown coloured synthetic diamonds manufactured using the chemical vapour deposition (CVD) process. Numerous attempts have been made to trace the origin of brown tints in natural diamond, with the most likely sources, dislocations and nitrogen impurities, ruled out through the application of various analytical techniques. Recently more emphasis has been placed on the study of vacancy related defects in natural diamond and their influence on colour. Differences between the annealing characteristics of brown coloured natural and CVD diamonds suggest that the defect or defects responsible for the brown colour might be different for each type of diamond. The focus of this research work is the analysis of vacancy defects of the order of 1nm in size using aberration corrected scanning transmission electron microscopy (AC-STEM). The sub-nanometre size probe afforded by this technique allows such defect structures to be resolved much more readily than with conventional high resolution transmission electron microscopy (HR-TEM). Small-scale contrast variations are apparent in the lattice images of brown diamonds but not of the colourless variety. These features have been compared to simulated phase contrast images of vacancy clusters in diamond.2) Yellow / Green coloured synthetic diamonds grown using metal solvent catalystSynthetic diamonds for jewellery and industrial applications are routinely manufactured under high pressure-temperature (HPHT) conditions that closely resemble those found during the creation of natural diamonds. Although the manufacturing equipment can vary in design, the HPHT process that occurs inside the reaction vessel remains essentially the same. During processing, the carbon source material is dissolved into a molten metal and then precipitated onto tiny seed diamonds that are added to the reaction chamber. Much time and effort has been expended in refining this process to reduce impurities and defects in the finished diamonds. The presence of remnant transition metal atoms (e.g. nickel) in the crystal structure influences the electronic properties and in particular the colour of the diamonds. The position and configuration of these metallic defects has previously been studied by a variety of analytical techniques, including optical absorption-luminescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These studies have proposed a number of optically active nickel centres at both substitutional and interstitial sites. Their association with vacancies and nitrogen atoms has also been highlighted. This work uses electron microscopy and spectroscopy to characterise the nickel defects in synthetic type 1b diamonds.
2

Etude d'interface entre matrice polymère et renforts à base de carbone, à l'aide d'observations multiéchelles et multimodales en microscopie électronique / Interface Study between polymer matrix and carbon-based reinforcements, using the electron microscopy in multiscale and multimodal

Liu, Yu 10 November 2017 (has links)
Cette thèse vise à étudier le comportement multiéchelle (nano-, micro- et macroscopique) des composites, basé sur une étude fine utilisant les techniques les plus modernes pour comprendre les interfaces et les quantifier. Deux séries de renforts sur une échelle micrométrique, des fibres de carbone (CF) et des matériaux à base de graphène ont été utilisées ici. Pour améliorer l'interaction entre les nanorenforts et la matrice polymère, deux voies principales ont été utilisées dans cette thèse : l'oxydation des renforts et la greffe de nanotubes de carbone sur leur surface.L'étude en elle-même a été menée à une échelle microscopique pour étudier la résistance interfaciale entre une fibre de carbone (CF) et la matrice époxy, avec des essais de traction effectués in situ dans la chambre d'un microscope à double colonne MEB-FIB (microscope électronique à balayage couplé à un faisceau d'ions focalisé). Le faisceau d'ions a été utilisé pour découper une éprouvette de traction du composite contenant à la fois de l'époxy et de la CF. Le champ de tractiona été appliqué via le nanomanipulateur et l'essai a été observé via les deux colonnes ionique et électronique (sous deux angles de vue différents) et a permis d'estimer le champ de déformation, et donc la résistance interfaciale au moment de la rupture. Une expérience similaire a été menée sur un composite où les renforts sont des nanoplaquettes de graphène.Enfin, l'étude en microscopie électronique en transmission de la région de l'interface entre l'époxy et les renforts a révélé la présence d'une interphase et a permis de mesurer son épaisseur et donner une indication de sa nature. À cette fin, une analyse EELS (spectroscopie par pertes d'énergie des électrons) a été effectuée, permettant de mesurer la densité de l'échantillon très localement (taille de sonde de l'ordre du dixième de nanomètre) en travers ou parallèlement à l'interface. Un scénario sur les modes de liaison chimique entre les deux milieux en fonction du traitement de surface utilisé permet d'expliquer la nature des interphases observées. / This thesis aims to investigate the multiscale (nano-, micro-, and macro-scopic) behavior of the composites based on a fine investigation using the most modern techniques, to understand the interfaces and to quantify them. Two series of reinforcements on a micrometer scale, carbon fibers (CFs) and graphene-based materials, were studied here. To improve the interactions between these nanofillers and the surrounding polymer matrix, two major routes were used in this thesis: the oxidation of the fillers and the grafting of carbon nanotubes on their surface.The study itself was conducted on a microscopic scale on the interfacial strength between CFs and the epoxy matrix, with tensile tests carried out in-situ in the chamber of a double-column FIB-SEM microscope (scanning electron microscope coupled to a focused ion beam). The ion beam was used to mill a thin bond-shaped tensile specimen of composite containing both an epoxy and a CF part. Thetensile stress field was applied using the nanomanipulator and the test was observed both via the ionic and the electronic columns (with two different angles of view) to estimate the strain field, hence the interfacial strength when the failure is observed. A similar experiment was led on a composite with GNPs.Finally, the transmission electron microscopy (TEM) study of the interface region between the epoxy and the graphene-based nanofillers revealed the existence of an interphase and allowed to measure its thickness and give an indication of its nature. For this purpose, an EELS (electron energy-loss spectroscopy) analysis was carried out, making it possible to measure the density of the sample very locally (probe size of the order of a tenth of a nanometer) across or parallelly to an interface. A scenario on the chemical bonding modes between the two media as a function of the surface treatment used makes it possible to explain the nature of the observed interphases.
3

電子顕微鏡分光と第一原理計算によるリチウム電池正極の機能元素電子状態解析

UKYO, Yoshio, SASAKI, Tsuyoshi, KONDO, Hiroki, MUTO, Shunsuke, TATSUMI, Kazuyoshi, 右京, 良雄, 佐々木, 厳, 近藤, 広規, 武藤, 俊介, 巽, 一厳 01 July 2012 (has links)
No description available.
4

Towards High Spatial Resolution Vibrational Spectroscopy in a Scanning Transmission Electron Microscope

January 2020 (has links)
abstract: Vibrational spectroscopy is a ubiquitous characterization tool in elucidating atomic structure at the bulk and nanoscale. The ability to perform high spatial resolution vibrational spectroscopy in a scanning transmission electron microscope (STEM) with electron energy-loss spectroscopy (EELS) has the potential to affect a variety of materials science problems. Since 2014, instrumentation development has pushed for incremental improvements in energy resolution, with the current best being 4.2 meV. Although this is poor in comparison to what is common in photon or neutron vibrational spectroscopies, the spatial resolution offered by vibrational EELS is equal to or better than the best of these other techniques. The major objective of this research program is to investigate the spatial resolution of the monochromated energy-loss signal in the transmission-beam mode and correlate it to the excitation mechanism of the associated vibrational mode. The spatial variation of dipole vibrational signals in SiO2 is investigated as the electron probe is scanned across an atomically abrupt SiO2/Si interface. The Si-O bond stretch signal has a spatial resolution of 2 – 20 nm, depending on whether the interface, bulk, or surface contribution is chosen. For typical TEM specimen thicknesses, coupled surface modes contribute strongly to the spectrum. These coupled surface modes are phonon polaritons, whose intensity and spectral positions are strongly specimen geometry dependent. In a SiO2 thin-film patterned with a 2x2 array, dielectric theory simulations predict the simultaneous excitation of parallel and uncoupled surface polaritons and a very weak excitation of the orthogonal polariton. It is demonstrated that atomic resolution can be achieved with impact vibrational signals from optical and acoustic phonons in a covalently bonded material like Si. Sub-nanometer resolution mapping of the Si-O symmetric bond stretch impact signal can also be performed in an ionic material like SiO2. The visibility of impact energy-loss signals from excitation of Brillouin zone boundary vibrational modes in hexagonal BN is seen to be a strong function of probe convergence, but not as strong a function of spectrometer collection angles. Some preliminary measurements to detect adsorbates on catalyst nanoparticle surfaces with minimum radiation damage in the aloof-beam mode are also presented. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
5

Microstructural Defects in Hot Deformed and As-Transformed τ-MnAl-C

Zhao, Panpan 15 November 2021 (has links)
Detailed microstructural characterisation has been conducted in both ‘as-transformed’ and ‘hot deformed’ samples of 𝜏-MnAl-C using transmission electron microscopy. After hot deformation, true twins, dislocations, intrinsic stacking faults and precipitates of Mn3AlC are the main defects in the recrystallised grains. A significant fraction of non-recrystallised grains existed, which had microstructures based on combinations of high densities of true twins, dislocations, and deformation bands. The formation of the Mn3AlC precipitates was confirmed and related to the reduction of saturation magnetization and the increase in the Curie temperature of 𝜏-MnAl-C after hot deformation. Antiphase boundaries, which are believed to act as nucleation sites for reverse domains, were not observed in the hot deformed sample. Increasing structural disorder is expected for the tetragonal L10 𝜏-MnAl-C (c:a = 0.91) going from coherent true twin boundary to incoherent true twin boundary to the order twin boundary. This was demonstrated from the interface structure in the HAADF-HRSTEM images. The disorder at different types of twin boundaries is also associated with the degree of segregation of the constituent elements. By using STEM-EELS, higher Mn enrichment and Al deficiency was observed at the order twin boundary with a thickness about 6 nm, slightly Mn segregation was observed at incoherent true twin boundary with reduced thickness about 1.5-2 nm and no segregation was found at the coherent true twin boundary. In addition, the distribution of carbon is inhomogeneous across the twin boundary and carbon cluster was found at the twin boundary. Micromagnetic simulations and machine learning were conducted in an international collaboration with Danube University Krems, Austria, which enabled the quantification of the effect of twins on the magnetic properties of 𝜏-MnAl-C.
6

Excursions in Electron Energy-Loss Spectroscopy

January 2020 (has links)
abstract: Recent improvements in energy resolution for electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-EELS) allow novel effects in the low-loss region of the electron energy-loss spectrum to be observed. This dissertation explores what new information can be obtained with the combination of meV EELS energy resolution and atomic spatial resolution in the STEM. To set up this up, I review nanoparticle shape effects in the electrostatic approximation and compare the “classical” and “quantum” approaches to EELS simulation. Past the electrostatic approximation, the imaging of waveguide-type modes is modeled in ribbons and cylinders (in “classical" and “quantum" approaches, respectively), showing how the spatial variations of such modes can now be imaged using EELS. Then, returning to the electrostatic approximation, I present microscopic applications of low-loss STEM-EELS. I develop a “classical” model coupling the surface plasmons of a sharp metallic nanoparticle to the dipolar vibrations of an adsorbate molecule, which allows expected molecular signal enhancements to be quantified and the resultant Fano-type asymmetric spectral line shapes to be explained, and I present “quantum” modelling for the charged nitrogen-vacancy (NV-) and neutral silicon-vacancy (SiV0) color centers in diamond, including cross-sections and spectral maps from density functional theory. These results are summarized before concluding. Many of these results have been previously published in Physical Review B. The main results of Ch. 2 and Ch. 4 were packaged as “Enhanced vibrational electron energy-loss spectroscopy of adsorbate molecules” (99, 104110), and much of Ch. 5 appeared as “Prospects for detecting individual defect centers using spatially resolved electron energy loss spectroscopy” (100, 134103). The results from Ch. 3 are being prepared for a forthcoming article in the Journal of Chemical Physics. / Dissertation/Thesis / Doctoral Dissertation Physics 2020

Page generated in 0.0351 seconds