21 |
Tracing Biogeochemical Processes Using Sulfur Stable Isotopes: Two Novel ApplicationsCousineau, Mélanie L. January 2013 (has links)
Abstract Dissimilatory microbial sulfate reduction (MSR) The specific objectives of the study were to provide the first measurements of sulfur isotope fractionation associated with acidophilic sulfate reducing-microorganisms, and to examine whether pH influences sulfur fractionation during MSR. The fractionation associated with the strains investigated was comparable to that of neutrophilic strains with similar metabolisms (4-12‰), but varied with pH. Two fractionation regimes were identified: one regime is consistent with fractionation during exponential growth, while the other – not identified previously - is not linked to active sulfate reduction and may result from internal sulfate accumulation. This would represent the first measurement of sulfur fractionation during sulfate uptake, the first step of MSR. Geological processes at the Cretaceous-Paleogene (KPg) boundary The KPg boundary is associated with one of the largest biological extinctions in the history of our planet. Two major geologic events - the Chicxulub bolide impact with evaporite terrane and the eruption of the Deccan continental flood basalts - coincide with the KPg boundary and have been identified as possible triggers for the extinctions, but their relative timing remains unresolved. The objectives of this study were to identify the contribution of these processes to the sulfur burden in the sedimentary environment of two freshwater KPg sections, and to determine their relative timing. The results demonstrate that the peak of Deccan volcanism post-dates the Chicxulub impact and the associated abrupt KPg mass extinction, thus precluding a direct volcanic causal mechanism, but shedding light on the underlying causes for the delayed recovery of ecosystems in the early Paleogene.
|
22 |
A prototype dynamic model for the co-treatment of a high strength simple-organic industrial effluent and coal-mine drainageHarding, Theodor 25 January 2021 (has links)
This research study's the use of biological sulfate reduction technologies for the treatment of Sasol Secunda's coal-mine drainage (CMD) using Fischer-Tropsch Reaction Water (FTRW) as a cost-efficient carbon source. The research aims to develop a prototype dynamic model that describes this co-treatment of FTRW and CMD in both a continuously stirred tank reactor (CSTR) biological sulfate reduction (BSR) system and a BSR gas-lift (BSR-GL) integrated system. The BSR-GL system recovers elemental sulfur (S0 ) from the H2S produced and stripped from the BSR unit. Furthermore, this study aims to use the prototype model for a quantitative comparison of the CSTR-BSR and BSR-GL systems. Two bench-scale 5-litre CSTR-BSR and a 20-litre BSR-GL system were operated, under varying feed COD concentrations and hydraulic retention times (HRTs), to generate datasets for use in verification and a rudimentary validation of the prototype model. The BSR-GL integrated system includes 1) a 1-litre H2S gas reactive absorption (ABS) unit utilising an aqueous ferric solution for the recovery of elemental sulfur (S0 ) from sulfide and 2) ferrous biological oxidation reactor to regenerate ferric from the ferrous for re-supply to the ABS unit. The datasets generated in the experimental study allowed for the identification, mathematical modelling and reaction verification of 32 components that interact as reactants and products in 23 reactions observed in the two BSR systems. The prototype model is presented in a mass and charge balanced Gujer matrix that includes, i) 5 SRB mediated processes, ii) 2 liquid-gas mass transfer processes, iii) 3 processes describing the ABS and Fe2+ bio-oxidation units, iv) 4 processes describing sulfide and elemental sulfur oxidation and v) the S0 and poly-sulfide aqueous equilibrium and vi) 9 processes describing death regeneration and BPO hydrolysis. This prototype model was implemented in the DHI WEST® software for initial stage simulation trials. The experimental datasets allowed for the first-stage estimation of the best-fit reaction rate equations and the calibration of the kinetic parameters related to the 23 reactions, using MATLAB® curve fitting toolbox. A pre-processor that describe the pH and equilibrium chemistry of the components of the artificially prepared FTRW+CMD feed mixture batches under varying total concentrations have also been developed in this research. This was done to generated influent file to the DHI WEST® simulations that incorporated the dynamics related to the FTRW+CMD feed mixtures. The sulfate utilisation rate (gSO4 -2 .l-1 .d-1 ) of the GL-BSR and CSTR-BSR systems were compared to determine which system had the best sulfate removal. The results were found to be as follows; a. On comparison it was found that the sulfate substrate utilisation rate for the CSTR_BSR system is 39.28% of that of the BSR-GL_N2 system, where both systems were fed at feed mixture of COD of 2500mgCOD/l, where the COD:SO4 2- was 0.7, b. For the same systems fed a feed mixture of COD at 5000mgCOD/l (COD:SO4 2- = 0.7), the sulfate substrate utilisation rate for the CSTR_BSR system was found to be 17.86% less than that of the BSR_GLN2 system. c. Finally, it was also found that the substrate utilisation rate for the CSTR_BSR system was 30.06% less than that of the BSR_GLN2 system at Se of 4gCOD/l, for both systems fed substrate at 5000mgCOD/l. Thus, it can be concluded that the sulfate substrate utilisation rate for the BSR-GL system is higher than that of the CSTR_BSR system, for systems fed COD feed mixtures at 2.5 or 5gCOD/l where both systems have the same effluent substrate concentrations. However, the difference in the comparative substrate utilisation rate is less at higher feed substrate concentrations. This is the influence of substrate inhibition on the active SRB biomass, which increases with higher effluent substrate concentrations. Finally, this research found that the use of gas-lift reactor technologies is superior to CSTR technologies in the treatment of coal-mine drainage utilising biological sulfate reduction (BSR). The CSTR-BSR system, fed sulfate between 1.6 to 14gSO4 2- /l, produced effluent with high dissolved H2S concentrations, on average 285mgS/l and maximum at >600mgS/l. Releasing this effluent to the environment would be hazardous to aquatic and human health and corrosive to infrastructure. As such, the effluent from the CSTR-BSR system requires further treatment to stabilise the water for any use. The BSR-GL technology allows for the conversion of the H2S produced during BSR reactions to form elemental sulfur, which is a resource recovered from this process, thus complying to the circular economy aim of this study.
|
23 |
Role of Sulfate-Reducing Bacteria in the Attenuation of Acid Mine Drainage through Sulfate and Iron ReductionBecerra, Caryl Ann 01 September 2010 (has links)
Acid mine drainage (AMD) is an acidic, iron-rich leachate that causes the dissolution of metals. It constitutes a worldwide problem of environmental contamination detrimental to aquatic life and water quality. AMD, however, is naturally attenuated at Davis Mine in Rowe, Massachusetts. We hypothesize that sulfate-reducing bacteria (SRB) are attenuating AMD. To elucidate the mechanisms by which SRB attenuate AMD, three research projects were conducted using a suite of molecular and geochemical techniques. First we established biological influence on the attenuation of AMD by comparing the microbial community and geochemical trends of microcosms of two contrasting areas within the site: AMD attenuating (AZ) and AMD generating (GZ) zones. The differences in geochemical trends between these zones were related to differences in microbial community membership. SRB were only detected in microcosms of the AZ, while iron oxidizers were only detected in the GZ. This study indicates that biological activity contributes to the attenuation of AMD and that SRB may have a role. To further describe the role of SRB, we determined the rates of sulfate reduction, the abundance, and membership of SRB in the second project. The sulfate reduction rate was weakly correlated with the abundance of SRB. This indicates that the SRB population may be utilizing another electron acceptor. One such electron acceptor would be iron, which was investigated in the third project. When SRB are inhibited, neither accumulation of reduced iron nor the formation of reduced iron sulfide precipitates occurred. Higher concentration of sulfide produced an increase in reduced iron and pH. Therefore, iron reduction mediated by reaction with biogenic sulfide contributes to the attenuation of AMD. This is the first report of the biological enhancement of iron reduction by acidotolerant SRB. The interdisciplinary research described in this dissertation provides evidence that SRB attenuate AMD through sulfate and iron reduction and a greater understanding of SRB in acidic environments. It also demonstrates how the biogeochemical cycling of sulfur is coupled to the iron cycle. Overall, the ubiquity and metabolic versatility of SRB offers boundless potential and exciting opportunities of study in the fields of bioremediation, geomicrobiology, and microbial ecology.
|
24 |
SULFATE REDUCTION IN FIVE CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGEFlege, Adam Eric 11 October 2001 (has links)
No description available.
|
25 |
Comunidade microbiana e produção de metano em reator anaeróbio em batelada com metilamina como fonte de carbono / Microbial community and methane production in anaerobic batch reactor with methylamine as carbon sourceVich, Daniele Vital 13 August 2010 (has links)
A degradação da metilamina foi investigada por meio da avaliação da velocidade específica máxima de produção de metano (VEM CH4) e da comunidade microbiana relacionada aos Domínios Bacteria e Archaea. Para isso, foram realizados dois ensaios com reatores anaeróbios em batelada inoculados com lodo granulado oriundo de reator UASB usado no tratamento de água residuária de abatedouro de aves. Em todos os ensaios, os reatores controle, que não receberam adição de metilamina, apresentaram VEM CH4 de 0,04 mmol/L g STV dia. O primeiro ensaio avaliou a degradação da metilamina em diferentes concentrações de inóculo (2,5, 5,0 e 10,0 g STV/L) e substrato (1.550 e 3.100 mg metilamina/L). A concentração de \'CH IND.4\' esperada estequiometricamente foi atingida em todos os reatores (37,50 e 75,00 mmol \'CH IND.4\'/L, para concentrações de 1.550 e 3.100 mg metilamina/L, respectivamente), exceto para aquele com 2,5 g STV/L e 3.100 mg metilamina/L, que produziu somente 2,04 mmol \'CH IND.4\'/L. A maior velocidade específica máxima de produção de \'CH IND.4\' foi 4,42 mmol/L g STV dia, obtida nos reatores com 2,5 g STV/L e 1.550 mg metilamina/L. Os reatores inoculados com 5,0 g STV/L tiveram VEM CH4 de 2,31 e 2,34 para 1.550 e 3.100 mg metilamina/L, respectivamente. Os reatores com 1.550 mg metilamina/L e 10,0 g STV/L apresentaram VEM CH4 de 1,28 mmol/L g STV dia. A concentração de \'N\'-\'NH IND.4\'POT.+\' excedeu em 12,9%, 0,7% e 18,3% o valor esperado (698 mg/L) para os reatores com 1.550 mg metilamina/L e 2,5, 5,0 e 10,0 g STV/L, respectivamente. Nos reatores com 3.100 mg metilamina/L, as concentrações finais de \'N\'-\'NH IND.4\'POT.+\' foram 122 e 1.726 mg/L para concentrações de inóculo de 2,5 e 5,0 g STV/L, respectivamente. O segundo ensaio comparou diferentes relações metilamina/sulfato (0,71, 1,26 e 2,18) em reatores inoculados com 5,0 g STV/L contendo 1.550 mg metilamina/L. As concentrações de \'CH IND.4\' esperadas estequiometricamente foram atingidas em todos os reatores. As velocidades específicas máximas de formação de \'CH IND.4\' foram de 2,54, 2,31 e 3,14 mmol/L g STV dia para as relações metilamina/sulfato 0,71, 1,26 e 2,18, respectivamente. Em todos os reatores, a concentração de \'N\'-\'NH IND.4\'POT.+\' atingiu média final de 1200 mg/L. Os reatores controle consumiram 71,9% do sulfato adicionado. Os reatores com relação metilamina/sulfato 0,71, 1,26 e 2,18 consumiram 49,6%, 61,6% e 83,2% de todo o sulfato adicionado, respectivamente. Nos dois ensaios, os exames microscópicos revelaram a presença de cocos, bacilos, filamentos, cocos e sarcinas fluorescentes. Nos reatores alimentados apenas com metilamina, o seqüenciamento de fragmentos da região 16S do RNAr detectou cinco Filos do Domínio Bacteria (Acidobacteria 4%, Firmicutes 11%, Proteobacteria 14%, Spirochaetes 13% e Synergistes 47%). Nos reatores com metilamina e sulfato, sete Filos foram detectados (Firmicutes 45%, Proteobacteria 7%, Spirochaetes 2%, Synergistes 16%, Chloroflexi 4%, Thermotogae 8% e Planctomycetes 1%). Nos dois ensaios, o Domínio Archaea foi predominantemente representado pelas Famílias Methanomicrobiaceae, Methanosaetaceae e Methanosarcinaceae, com presença de Methanomethylovorans hollandica, uma espécie de arquéia metanogênica com metabolismo especializado na degradação de metilamina. / The degradation of methylamine was investigated assessing the maximum specific methane production rate (MSR CH4) and the microbial community related to Bacteria e Archaea Domains. For this, two tests were performed in anaerobic batch reactors inoculated with granular sludge from an UASB reactor used in the treatment of poultry wastes. In all experiments, the control reactors, without methylamine addition, showed MSR CH4 of 0.04 mmol/L g TVS day. The first experiment evaluated the degradation of methylamine at different inoculum concentrations (2.5, 5.0 and 10.0 g TVS/L) and substrate concentrations (1,550 and 3,100 mg methylamine/L). The stoichiometrically expected \'CH IND.4\' concentration was reached in all reactors (37.50 and 75.00 mmol \'CH IND.4\'/L, for methylamine concentrations of 1,550 and 3,100 mg methylamine/L, respectively), except for the reactor with 2.5 g TVS/L and 3,100 mg methylamine/L, that produced only 2.04 mmol \'CH IND.4\'/L. The highest maximum specific methane production rate was 4.42 mmol/L g TVS day, reached in the reactors with 2.5 g TVS/L and 1,550 mg methylamine/L. The reactors inoculated with 5.0 g TVS/L had MSR CH4 of 2.31 and 2.34 for 1,550 and 3,100 mg methylamine/L, respectively. The reactors with 1,550 mg methylamine/L and 10.0 g TVS/L had MSR CH4 of 1.28 mmol/L g TVS day. The \'N\'-\'NH IND.4\'POT.-\' concentrations exceeded 12.9%, 0.7% and 18.3% the expected value (698 mg/L) for the reactors with 1,550 mg methylamine/L and 2.5, 5.0 and 10.0 g TVS/L, respectively. In the reactors with 3,100 mg methylamine/L, the final concentrations of \'NH IND.4\'POT.+\'-\'N\' were 122 and 1,726 mg/L for inoculum concentrations of 2.5 and 5.0 g TVS/L, respectively. The second experiment compared different methylamine/sulfate ratios (0.71, 1.26 and 2.18) on reactors inoculated with 5.0 g TVS/L containing 1,550 mg methylamine/L. The stoichiometrically expected \'CH IND.4\' concentration was reached in all reactors. The maximum specific methane production rates were 2.54, 2.31 and 3.14 mmol/L g TVS day for methylamine/sulfate ratios of 0.71, 1.26 and 2.18, respectively. In all reactors, the average \'NH IND.4\'POT.+\'-\'N\' final concentration was 1,200 mg/L. The control reactors consumed 71.9% of the added substrate. The reactors with methylamine/sulfate ratios of 0.71, 1.26 and 2.18 consumed 49.6%, 61.6% and 83.2% of all the added sulfate, respectively. In both experiments, the microscopic analysis revealed cocci, rods, filaments, fluorescent cocci and sarcinas. In the reactors fed with methylamine only, the sequencing of 16S rRNA fragments detected five Phyla of the Bacteria Domain (Acidobacteria 4%, Firmicutes 11%, Proteobacteria 14%, Spirochaetes 13% and Synergistes 47%). In the reactors with methylamine and sulfate, seven Phyla were detected (Firmicutes 45%, Proteobacteria 7%, Spirochaetes 2%, Synergistes 16%, Chloroflexi 4%, Thermotogae 8% e Planctomycetes 1%). In both experiments, Archaea Domain was mainly represented by Methanomicrobiaceae, Methanosaetaceae and Methanosarcinaceae Families, with the presence of Methanomethylovorans hollandica, a methanogenic archaea specie with specific metabolism for methylamine degradation.
|
26 |
Comunidade microbiana e produção de metano em reator anaeróbio em batelada com metilamina como fonte de carbono / Microbial community and methane production in anaerobic batch reactor with methylamine as carbon sourceDaniele Vital Vich 13 August 2010 (has links)
A degradação da metilamina foi investigada por meio da avaliação da velocidade específica máxima de produção de metano (VEM CH4) e da comunidade microbiana relacionada aos Domínios Bacteria e Archaea. Para isso, foram realizados dois ensaios com reatores anaeróbios em batelada inoculados com lodo granulado oriundo de reator UASB usado no tratamento de água residuária de abatedouro de aves. Em todos os ensaios, os reatores controle, que não receberam adição de metilamina, apresentaram VEM CH4 de 0,04 mmol/L g STV dia. O primeiro ensaio avaliou a degradação da metilamina em diferentes concentrações de inóculo (2,5, 5,0 e 10,0 g STV/L) e substrato (1.550 e 3.100 mg metilamina/L). A concentração de \'CH IND.4\' esperada estequiometricamente foi atingida em todos os reatores (37,50 e 75,00 mmol \'CH IND.4\'/L, para concentrações de 1.550 e 3.100 mg metilamina/L, respectivamente), exceto para aquele com 2,5 g STV/L e 3.100 mg metilamina/L, que produziu somente 2,04 mmol \'CH IND.4\'/L. A maior velocidade específica máxima de produção de \'CH IND.4\' foi 4,42 mmol/L g STV dia, obtida nos reatores com 2,5 g STV/L e 1.550 mg metilamina/L. Os reatores inoculados com 5,0 g STV/L tiveram VEM CH4 de 2,31 e 2,34 para 1.550 e 3.100 mg metilamina/L, respectivamente. Os reatores com 1.550 mg metilamina/L e 10,0 g STV/L apresentaram VEM CH4 de 1,28 mmol/L g STV dia. A concentração de \'N\'-\'NH IND.4\'POT.+\' excedeu em 12,9%, 0,7% e 18,3% o valor esperado (698 mg/L) para os reatores com 1.550 mg metilamina/L e 2,5, 5,0 e 10,0 g STV/L, respectivamente. Nos reatores com 3.100 mg metilamina/L, as concentrações finais de \'N\'-\'NH IND.4\'POT.+\' foram 122 e 1.726 mg/L para concentrações de inóculo de 2,5 e 5,0 g STV/L, respectivamente. O segundo ensaio comparou diferentes relações metilamina/sulfato (0,71, 1,26 e 2,18) em reatores inoculados com 5,0 g STV/L contendo 1.550 mg metilamina/L. As concentrações de \'CH IND.4\' esperadas estequiometricamente foram atingidas em todos os reatores. As velocidades específicas máximas de formação de \'CH IND.4\' foram de 2,54, 2,31 e 3,14 mmol/L g STV dia para as relações metilamina/sulfato 0,71, 1,26 e 2,18, respectivamente. Em todos os reatores, a concentração de \'N\'-\'NH IND.4\'POT.+\' atingiu média final de 1200 mg/L. Os reatores controle consumiram 71,9% do sulfato adicionado. Os reatores com relação metilamina/sulfato 0,71, 1,26 e 2,18 consumiram 49,6%, 61,6% e 83,2% de todo o sulfato adicionado, respectivamente. Nos dois ensaios, os exames microscópicos revelaram a presença de cocos, bacilos, filamentos, cocos e sarcinas fluorescentes. Nos reatores alimentados apenas com metilamina, o seqüenciamento de fragmentos da região 16S do RNAr detectou cinco Filos do Domínio Bacteria (Acidobacteria 4%, Firmicutes 11%, Proteobacteria 14%, Spirochaetes 13% e Synergistes 47%). Nos reatores com metilamina e sulfato, sete Filos foram detectados (Firmicutes 45%, Proteobacteria 7%, Spirochaetes 2%, Synergistes 16%, Chloroflexi 4%, Thermotogae 8% e Planctomycetes 1%). Nos dois ensaios, o Domínio Archaea foi predominantemente representado pelas Famílias Methanomicrobiaceae, Methanosaetaceae e Methanosarcinaceae, com presença de Methanomethylovorans hollandica, uma espécie de arquéia metanogênica com metabolismo especializado na degradação de metilamina. / The degradation of methylamine was investigated assessing the maximum specific methane production rate (MSR CH4) and the microbial community related to Bacteria e Archaea Domains. For this, two tests were performed in anaerobic batch reactors inoculated with granular sludge from an UASB reactor used in the treatment of poultry wastes. In all experiments, the control reactors, without methylamine addition, showed MSR CH4 of 0.04 mmol/L g TVS day. The first experiment evaluated the degradation of methylamine at different inoculum concentrations (2.5, 5.0 and 10.0 g TVS/L) and substrate concentrations (1,550 and 3,100 mg methylamine/L). The stoichiometrically expected \'CH IND.4\' concentration was reached in all reactors (37.50 and 75.00 mmol \'CH IND.4\'/L, for methylamine concentrations of 1,550 and 3,100 mg methylamine/L, respectively), except for the reactor with 2.5 g TVS/L and 3,100 mg methylamine/L, that produced only 2.04 mmol \'CH IND.4\'/L. The highest maximum specific methane production rate was 4.42 mmol/L g TVS day, reached in the reactors with 2.5 g TVS/L and 1,550 mg methylamine/L. The reactors inoculated with 5.0 g TVS/L had MSR CH4 of 2.31 and 2.34 for 1,550 and 3,100 mg methylamine/L, respectively. The reactors with 1,550 mg methylamine/L and 10.0 g TVS/L had MSR CH4 of 1.28 mmol/L g TVS day. The \'N\'-\'NH IND.4\'POT.-\' concentrations exceeded 12.9%, 0.7% and 18.3% the expected value (698 mg/L) for the reactors with 1,550 mg methylamine/L and 2.5, 5.0 and 10.0 g TVS/L, respectively. In the reactors with 3,100 mg methylamine/L, the final concentrations of \'NH IND.4\'POT.+\'-\'N\' were 122 and 1,726 mg/L for inoculum concentrations of 2.5 and 5.0 g TVS/L, respectively. The second experiment compared different methylamine/sulfate ratios (0.71, 1.26 and 2.18) on reactors inoculated with 5.0 g TVS/L containing 1,550 mg methylamine/L. The stoichiometrically expected \'CH IND.4\' concentration was reached in all reactors. The maximum specific methane production rates were 2.54, 2.31 and 3.14 mmol/L g TVS day for methylamine/sulfate ratios of 0.71, 1.26 and 2.18, respectively. In all reactors, the average \'NH IND.4\'POT.+\'-\'N\' final concentration was 1,200 mg/L. The control reactors consumed 71.9% of the added substrate. The reactors with methylamine/sulfate ratios of 0.71, 1.26 and 2.18 consumed 49.6%, 61.6% and 83.2% of all the added sulfate, respectively. In both experiments, the microscopic analysis revealed cocci, rods, filaments, fluorescent cocci and sarcinas. In the reactors fed with methylamine only, the sequencing of 16S rRNA fragments detected five Phyla of the Bacteria Domain (Acidobacteria 4%, Firmicutes 11%, Proteobacteria 14%, Spirochaetes 13% and Synergistes 47%). In the reactors with methylamine and sulfate, seven Phyla were detected (Firmicutes 45%, Proteobacteria 7%, Spirochaetes 2%, Synergistes 16%, Chloroflexi 4%, Thermotogae 8% e Planctomycetes 1%). In both experiments, Archaea Domain was mainly represented by Methanomicrobiaceae, Methanosaetaceae and Methanosarcinaceae Families, with the presence of Methanomethylovorans hollandica, a methanogenic archaea specie with specific metabolism for methylamine degradation.
|
27 |
Assessing the influence of diagenesis on reservoir quality: Happy Spraberry Field, Garza County, TexasMazingue-Desailly, Vincent Philippe Guillaume 30 September 2004 (has links)
In the Permian Basin, strata of Leonardian age typically consist of interbedded carbonates and siliciclastics interpreted to be turbidite deposits. Happy Spraberry Field produces from a 100-foot thick carbonate section in the Lower Clear Fork Formation (Lower Leonardian) on the Eastern Shelf of the Midland Basin. Reservoir facies include oolitic- to-skeletal grainstones and packstones, rudstones and in situ Tubiphytes bindstones. Depositional environments vary from open marine reefs to shallow marine oolitic shoal mounds. Best reservoir rocks are found in the oolitic-skeletal packstones. Diagenesis occurred in several phases and includes (1) micritization, (2) stabilization of skeletal fragments, (3) recrystallization of lime mud, (4) intense and selective dissolution, (5) precipitation of four different stages of calcite cement, (6) mechanical compaction, (7) late formation of anhydrite and (8) saddle dolomite and (9) replacement by chalcedony. Oomoldic porosity is the dominant pore type in oolitic grainstones and packstones. Incomplete dissolution of some ooids left ring-shaped structures that indicate ooids were originally bi-mineralic. Bacterial sulfate reduction is suggested by the presence of (1) dissolved anhydrite, (2) saddle dolomite, (3) late-stage coarse-calcite cement and (4) small clusters of pyrite. Diagenetic overprinting on depositional porosity is clearly evident in all reservoir facies and is especially important in the less-cemented parts of the oolitic grainstones where partially-dissolved ooids were subjected to mechanical compaction resulting in "eggshell" remnants. Pore filling by late anhydrite is most extensive in zones where dissolution and compaction were intense. Finally, a porosity-permeability model was constructed to present variations in oolitic packstone- rudstone-bindstone reservoir rocks. The poroperm model could not be applied to oolitic grainstone intervals because no consistent trends in the spatial distribution of porosity and permeability were identified. Routine core analysis did not produce any reliable value of water saturation (Sw). An attempt to take advantage of wireline log data indicates that the saturation exponent (n) may be variable in this reservoir.
|
28 |
On the mechanisms of sulfur isotope fractionation during microbial sulfate reductionLeavitt, William Davie 04 June 2015 (has links)
Underlying all applications of sulfur isotope analyses is our understanding of isotope systematics. This dissertation tests some fundamental assumptions and assertions, drawn from equilibrium theory and a diverse body of empirical work on biochemical kinetics, as applied to the multiple sulfur isotope systematics of microbial sulfate reduction. I take a reductionist approach, both in the questions addressed and experimental approaches employed. This allows for a mechanistic, physically consistent interpretation of geological and biological sulfur isotope records. The goal of my work here is to allow interpreters a more biologically, chemically and physically parsimonious framework to decipher the signals coded in modern and ancient sulfur isotope records. / Earth and Planetary Sciences
|
29 |
Assessing the influence of diagenesis on reservoir quality: Happy Spraberry Field, Garza County, TexasMazingue-Desailly, Vincent Philippe Guillaume 30 September 2004 (has links)
In the Permian Basin, strata of Leonardian age typically consist of interbedded carbonates and siliciclastics interpreted to be turbidite deposits. Happy Spraberry Field produces from a 100-foot thick carbonate section in the Lower Clear Fork Formation (Lower Leonardian) on the Eastern Shelf of the Midland Basin. Reservoir facies include oolitic- to-skeletal grainstones and packstones, rudstones and in situ Tubiphytes bindstones. Depositional environments vary from open marine reefs to shallow marine oolitic shoal mounds. Best reservoir rocks are found in the oolitic-skeletal packstones. Diagenesis occurred in several phases and includes (1) micritization, (2) stabilization of skeletal fragments, (3) recrystallization of lime mud, (4) intense and selective dissolution, (5) precipitation of four different stages of calcite cement, (6) mechanical compaction, (7) late formation of anhydrite and (8) saddle dolomite and (9) replacement by chalcedony. Oomoldic porosity is the dominant pore type in oolitic grainstones and packstones. Incomplete dissolution of some ooids left ring-shaped structures that indicate ooids were originally bi-mineralic. Bacterial sulfate reduction is suggested by the presence of (1) dissolved anhydrite, (2) saddle dolomite, (3) late-stage coarse-calcite cement and (4) small clusters of pyrite. Diagenetic overprinting on depositional porosity is clearly evident in all reservoir facies and is especially important in the less-cemented parts of the oolitic grainstones where partially-dissolved ooids were subjected to mechanical compaction resulting in "eggshell" remnants. Pore filling by late anhydrite is most extensive in zones where dissolution and compaction were intense. Finally, a porosity-permeability model was constructed to present variations in oolitic packstone- rudstone-bindstone reservoir rocks. The poroperm model could not be applied to oolitic grainstone intervals because no consistent trends in the spatial distribution of porosity and permeability were identified. Routine core analysis did not produce any reliable value of water saturation (Sw). An attempt to take advantage of wireline log data indicates that the saturation exponent (n) may be variable in this reservoir.
|
30 |
Redução de sulfato em biorreator operado em batelada e batelada alimentada seqüenciais contendo biomassa granulada com agitação mecânica e Draft-Tube / Sulfate reduction in bioreactor in sequencing batch and fed-batch containing granulated biomass with mechanical stirring and draft-tubeMockaitis, Gustavo 26 March 2008 (has links)
O presente projeto avaliou um reator anaeróbio operado em batelada e batelada alimentada seqüenciais (ASBR), em ciclos de 8 horas, utilizando biomassa granulada e agitação mecânica em um draft-tube, alimentado com água residuária sintética (500 mgDQO/L), contendo sulfato em diferentes relações DQO/[\'SO IND.4\' POT.2-\']. Em todos os ensaios o reator apresentou uma operação estável, produzindo alcalinidade e com concentração de ácidos voláteis totais em níveis adequados. Para os tempos de alimentação de 10 min, 3 h e 6 h, respectivamente, as eficiências de remoção de sulfato foram de 30, 72 e 72% nas operações nas quais o reator foi alimentado com uma relação DQO/[\'SO IND.4\'POT.2-\'] de 1,34. Nos ensaios nos quais o reator foi alimentado na relação DQO/[\'SO IND.4\'POT. 2-\'] de 0,67, as eficiências para a redução de sulfato foram de 25, 58 e 55%, respectivamente. Na operação com relação DQO/[\'SO IND.4\'POT.2-\'] de 0,34, as eficiências para redução de sulfato foram de 23, 37 e 27%, respectivamente. Desta maneira, pode-se concluir que as operações em batelada alimentada favoreceram a remoção de sulfato, enquanto foi observado que nas operações em batelada a remoção de matéria orgânica atingiu melhores eficiências. / This present work evaluate an anaerobic sequencing batch reactor (ASBR), fed in batch and fed-batch, and cycles of 8 hours, using granulated biomass and mechanical stirring in a draft-tube, fed with synthetic wastewater (500 mgCOD/L), enriched with sulfate in some COD/[\'SO IND.4\'POT.2-\'] relations. In all operations the reactor showed a stable operation, producing alkalinity and maintaining the volatile acids in adequate levels. Considering the fed periods of 10 min, 3 h and 6 h, respectively, the removal efficiencies of the sulfate was 30, 72 e 72%, in the operations when the reactor was fed with a COD/[\'SO IND.4\'POT.2-\'] relation of 1,34. In the essays when the reactor was fed in COD/[\'SO IND.4\'POT.2-\'] relation of 0,67, the efficiencies of the sulfate reduction was 25, 58 e 55%, respectively. When the reactor was operated with COD/[\'SO IND.4\'POT.2-\'] relation of 0,34, the efficiencies of sulfate reduction 23, 37 e 27%, respectively. Thus, is possible to conclude that the operations in fed-batch increased the efficiency of sulfate removal, at what time was observed that in batch operations the organic matter removal attained improved efficiencies.
|
Page generated in 0.0215 seconds