1 |
Molecular Genetic Analysis Of The Role Of Nse2, A SUMO E3 Ligase Of The Smc5/6 Complex, In Resisting Genotoxic Stress And Maintaining Chromosome Stability In Saccharomyces CerevisiaeRai, Ragini 06 1900 (has links)
DNA repair pathways have evolved to protect the genome from damage caused by intrinsic and extrinsic factors. Although numerous DNA repair mechanisms have been studied and reported, information regarding how they coordinate with the necessary changes in chromatin structure is scarce. Smc (structural maintenance of chromosomes) proteins are a conserved, essential family of proteins required for chromosome organization and accurate segregation. The budding yeast, Saccharomyces cerevisiae has three Smc-protein complexes: Smc1/3 complex (cohesin), Smc2/4 complex (condensin) and the Smc5/6 complex, required for sister chromatid cohesion, condensation and DNA repair, respectively. The chromatin associated Smc5/6 complex consists of Smc5, Smc6 and six non-smc elements (Nse1-Nse6). Smc5 and Smc6 are required for stability of repetitive chromosomal regions and sister chromatid recombination-mediated repair of double-strand breaks.
Mms21/Nse2, a subunit of the Smc5/6 complex, is a SUMO E3-ligase, which conjugates SUMO (small ubiquitin-like modifier) to Smc5 and Yku70 (DNA repair protein) and its SUMO ligase activity protects the cells from extrinsic DNA damage. To address the role of Nse2 SUMO ligase in cellular events, we isolated mutants (nse2∆sl and nse2C221A) defective in the E3-ligase domain of Nse2 and found that these mutants are sensitive to genotoxic agents, for example MMS, UV or bleomycin, as expected. We found that cysteine 221 present in the SP-RING domain of Nse2 is required in the function of Nse2 in resisting genotoxic stress. We found that nse2∆sl cultures are slow growing and show increased abundance of cells having 2N DNA content (indicative of a G2-M cell cycle delay or arrest) relative to wild type cells. The DNA damage checkpoint pathway is activated to a limited extent in unchallenged nse2∆sl mutant cells indicating that cells lacking the SUMO ligase activity of Nse2 incur spontaneous DNA damage. Furthermore nse2∆sl cells are exquisitely sensitive to caffeine, an agent known to override the DNA damage checkpoint in a number of organisms by inhibiting the DNA damage checkpoint transducer ATR (Homo sapiens), Mec1 (Saccharomyces cerevisiae) and Rad3 (Schizosaccharomyces pombe). In order to investigate the importance of the DNA damage checkpoint pathway for nse2∆sl cells, we employed a genetic approach. We found that nse2∆sl exhibits synthetic sick interaction with mec1∆ but not tel1∆ (defective in Mec1 or Tel1 PI kinases) or mrc1∆ (defective in Mrc1 or mediator of replication checkpoint 1) indicating that the DNA damage induced Mec1 dependent checkpoint pathway is selectively required but the replication stress checkpoint pathway is dispensable for optimal growth of unchallenged nse2∆sl cells.
In order to further investigate the role of Nse2 in S phase events, we used camptothecin (CPT), a drug that induces S phase specific double strand breaks. CPT inhibits topoisomerase I by trapping the covalent Top1-DNA intermediate. Collision of a DNA replication fork with such a complex results in double-strand and single-strand breaks in DNA. We found that nse2∆sl is CPT-sensitive and that nse2∆sl top1-8 has a synthetic sick phenotype. Thus, our chemical and genetic interaction studies suggest that the SUMO ligase activity of Nse2 may be required when Top1 function is compromised. Interestingly, human and yeast Top1 proteins are known to be sumoylated. Our findings suggest that MMS-induced enhancement of Top1 sumoylation in budding yeast is partially dependent on SUMO ligase activity of Nse2. Since both sumoylation and Top1 play a role in telomere maintenance, we also examined the telomere length in single as well as double mutants and found that there is slight telomere lengthening in nse2∆sl top1-8 double mutant. To gain further insight into the genetic interaction between Nse2 and other proteins which affect DNA topology, we also investigated genetic interaction of Nse2 with other topoisomerases. We found that top3-2 nse2∆sl exhibited a synthetic sick phenotype but nse2∆sl top2-4 showed partial rescue of temperature sensitivity.
In order to investigate whether chromosome integrity is compromised in nse2∆sl cells we employed a YAC (yeast artificial chromosome) based assay to examine GCRs (gross chromosomal rearrangements). We found elevated levels of GCR in nse2∆sl cells compared to wild type cells. Furthermore, deletion of DNA Topoisomerase1 in nse2∆sl background selectively destabilizes a longer YAC relative to shorter YACs. We also examined the effect of varying origin number on YAC stability in nse2∆sl as well as top1∆ and nse2∆sl top1∆ cells. We found that a YAC having fewer origins is not destabilized in nse2∆sl and top1∆ single mutants but is destabilized in the nse2∆sl top1∆ double mutant. Since Nse2 is a non-SMC member of the Smc5/6 complex, we also investigated the effect of varying origin number on YAC stability in smc6-56 and smc656 top1∆ mutants. We found that the stability of a YAC is modestly compromised in the smc6-56 mutant but its derivative having fewer origins is not further destabilized, rather it seems to be stabilized.
In order to gain molecular insights into the involvement of the SUMO ligase activity of Nse2 in maintenance of chromosome integrity, we examined sumoylation of specific substrates following a candidate approach. Smc5 and Yku70 are known targets of Nse2dependent sumoylation. We found that Smc6 is also sumoylated and that the MMS-induced enhancement of Smc6 sumoylation in budding yeast is partially dependent on Nse2. To understand the functional significance of Smc5 sumoylation, we mutated lysine residues of all the four predicted sumoylation sites ψKXE/D, individually as well as all four together. We found that all the single as well as quadruple mutants were weakly sensitive to MMS suggesting that these putative sumoylation sites of Smc5 may contribute towards countering MMS-induced DNA damage. Interestingly, we found that Smc5 sumoylation is enhanced when treated with MMS (methyl methane sulfonate) but not significantly with HU (hydroxyurea) and CPT (camptothecin). We also generated putative ATP-binding defective mutants in Smc5. Previous studies suggest that the ATPase motif is required for the essential function of some Smc proteins (for example, Smc1 and Smc6). We found that smc5K75E and smc5K75Q, having a mutation in the lysine residue of the conserved GXGKS motif present in the Walker A type box at the Nterminus exhibited a null phenotype implying that this conserved lysine residue is required for essential function of Smc5.
In this study, employing genetic and biochemical methods, we have characterized the Nse2 SUMO ligase defective mutant and analyzed its role in the unperturbed mitotic cell cycle and in genome maintenance. We have also employed genetic methods to study the involvement of both Nse2 and DNA Topoisomerase I in maintaining genomic stability. Lastly, we have addressed the functional significance of Lysine residues of putative sumoylation sites and the conserved ATP-binding motif of Smc5 by mutational analysis.
In conclusion, our study highlights an important role for the SUMO ligase activity of Nse2 in maintaining genomic stability and suggests that sumoylation of Smc5 may be important for resisting MMS-induced genotoxic stress.
|
2 |
Quantitative proteomics identifies substrates of SUMO E3 ligase PIAS proteins involved in cell growth and motilityLi, Chongyang 12 1900 (has links)
Protein SUMOylation is a highly dynamic and reversible post-translational modification that targets lysine residues on a wide range of proteins involved in several essential cellular events, including protein translocation and degradation, mitotic chromosome segregation, DNA damage response, cell cycle progression, cell proliferation, and migration. Protein SUMOylation is an ATP-dependent enzymatic process that involves an E1 activating enzyme SAE1/2, a E2 conjugase UBC9, and usually facilitated by SUMO E3 ligases. The SP-RING family is the largest family of SUMO E3 ligases, encompassing seven mammalian protein inhibitor of activated STAT (PIAS) proteins. PIAS family was originally identified as specific inhibitors for signal transducer and activator of transcription (STAT), which involves gene transcriptional regulation. Recent studies showed that PIAS proteins also play important roles in the regulation of protein stability and signal transduction through the SUMOylation of target substrates. In addition, PIAS-mediated protein SUMOylation is also involved in several cellular processes, including DNA damage repair, immune response, cellular proliferation, and motility. Most notably, PIAS proteins are highly expressed in different cancer types and have been implicated in tumorigenesis. Several reports suggest that PIAS proteins could promote cancer cell growth and progression by regulating the SUMOylation of different substrates. To date, a number of substrates of PIAS ligases have been identified from several individual studies, and hundreds of specific SUMO E3 ligase substrates were identified from a human proteome microarray-based activity screen. However, how these substrates are selected, and which SUMOylation sites are targeted by these PIAS are still unknown.
To answer these questions, I started my investigation with PIAS1, one of the most well studied SUMO E3 ligases. By changing the expression level of PIAS1 in HeLa cells using gene overexpression or CRISPR/Cas9 gene knockout, I found PIAS1 had a physiological impact on cell proliferation and migration. I took advantage of the previously developed SUMO proteomics workflow to quantitatively profile global SUMOylome changes upon PIAS1 overexpression in a site-specific manner. I identified 983 SUMO sites on 544 proteins, of which 62 proteins were assigned as putative PIAS1 substrates. In particular, Vimentin (VIM), a type III intermediate filament protein involved in cytoskeleton organization and cell motility, was identified as PIAS1 substrates. Two SUMOylation sites mediated by PIAS1 at Lys-439 and Lys-445 residues were further evaluated and found to be necessary for dynamic disassembly and assembly of vimentin intermediate filaments, which further regulates cell migration and motility.
In the second study, I extended my investigation to all PIAS ligases and further found that all PIAS proteins impact cell proliferation and migration of breast cancer cell MDA-MB-231 after CRISPR/Cas9 gene knockout. I further optimized my SILAC-based quantitative SUMO proteomics approach and combined it with transcriptomics to gain a system-level understanding of the functional components involved in PIAS regulatory networks. A large subset of proteins/ genes involved in cell proliferation and migration were commonly regulated by all PIAS proteins, suggesting a redundancy of regulation within the PIAS family. In addition, each PIAS regulated a unique pool of substrates/genes involved in different cellular processes, such as DNA damage repair, chromatin remodeling, and SUMO chain formation, suggesting that each PIAS specifically regulates cellular functions. The trans-scale analyses between proteomics and transcriptomics shed light on the comprehensive pictures of the regulation networks by PIAS proteins beyond their direct enzymatic activity.
Overall, the quantitative SUMO proteomics approach provided a robust method for identifying substrates of PIAS SUMO E3 ligases. The combination of proteomic and transcriptomic analyzes made it possible to draw up a global portrait of the regulatory mechanisms governed by the PIAS proteins. / La SUMOylation des protéines est une modification post-traductionnelle se produisant sur
des lysines d’un large éventail de protéines cellulaires. Cette modification est dynamique et régit
plusieurs évènement cellulaires essentiels, dont la translocation et la dégradation des protéines,
la ségrégation chromosomique mitotique, la réparation de l'ADN, la progression du cycle
cellulaire, la prolifération cellulaire et la migration. La conjugaison de la protéine SUMO sur son
substrat se produit grâce à une triade enzymatique regroupant l’enzyme d’activation E1 SAE 1/2,
la conjugase E2 UBC9 et dans la plupart des cas une ligase SUMO E3. Cette cascade enzymatique
nécessite une source d’ATP pour son initiation. Parmi la famille des ligases SUMO E3, on retrouve
un domaine spécifique nommé SP-RING présent chez une sous population de celles-ci. Parmi ces
ligases on retrouve 7 protéines inhibitrices des protéines STAT activées regroupees sous le nom
de PIAS. Les ligases PIAS ont été identifiées à l'origine comme des inhibiteurs spécifiques des
protéines STAT responsable du signal de transduction et de l’activation de la transcription
génique. Des études récentes ont montré que les protéines PIAS jouent également un rôle
important sur la stabilité de leurs substrats et la transduction de leur signal. De plus, les substrats
SUMOylés par les PIAS sont impliqués dans plusieurs processus cellulaires, notamment la
réparation des dommages à l'ADN, la réponse immunitaire, la prolifération et la motilité
cellulaire. Ces divers processus cellulaires peuvent être déréglés et entrainer le développement
du cancer. Il s’avère que les protéines PIAS sont fortement exprimées dans divers types de cancer
et sont impliquées dans la tumorigenèse. Plusieurs rapports suggèrent que les protéines PIAS
pourraient favoriser la croissance et la progression des cellules cancéreuses en régulant le niveau
de SUMOylation de plusieurs substrats. Initialement, les substrats des ligases PIAS ont été
identifiés à partir de plusieurs études individuelles et plus récemment, des centaines de substrats
spécifiques de la SUMO E3 ligase ont été identifiés à partir de criblage de micropuces à protéines
interrogeant le protéome humain. Cependant, la manière dont ces substrats sont sélectionnés et
quels sont les sites de SUMOylation ciblés par ces PIAS demeurent encore méconnus.
Afin d’aborder ces questions, j’ai commencé mon étude avec PIAS1, l'une des ligases SUMO
E3 les plus étudiées. Pour ce faire, j’ai varié le niveau d'expression de PIAS1 dans des cellules
iv
HeLa selon l’approche CRISPR/Cas9. Ainsi, deux modèles ont été construit, soit via une
surexpression du gène ou via un knockout du gène. Ces mutants ont permis de constater que
PIAS1 avait un impact physiologique sur la prolifération et la migration des cellules. J’ai tiré
avantage d’une méthode protéomique précédemment développé sur les peptides SUMO pour
déterminer les changements de SUMOylation lors de la surexpression de PIAS1. J’ai identifié 983
sites SUMO sur 544 protéines, dont 62 protéines ont été identifiées comme substrats potentiels
de PIAS1. Parmi celles-ci, la vimentine (VIM), une protéine de la famille des filaments
intermédiaire de type III impliquée dans l'organisation du cytosquelette et la motilité cellulaire,
a été reconnu comme un substrat de PIAS1. Afin de valider le rôle de la SUMOylation des lysines
Lys-439 et Lys-445 de VIM j’ai effectué des études fonctionelles de motilité cellulaire avec les
mutants où ces sites ont été substitués en arginine. Ces expériences m’ont permis de constater
que la SUMOylation de VIM aux sites Lys-439 et Lys-445 est nécessaire à l’assemblage et
désassemblage dynamique des filaments intermédiaires de VIM, lesquels regulent la migration
et la motilité cellulaire.
Dans la deuxième étude, j’ai élargi mon recherche sur toutes les ligases PIAS et avons
découvert que ces dernières avaient toutes un impact sur la prolifération cellulaire et la migration
des cellules du cancer du sein MDA-MB-231 suite à un knockout de ces gènes par CRISPR / Cas9.
De plus, j’ai optimisé mon approche de protéomique quantitative SUMO via SILAC et l'avons
complémenté d’une analyse transcriptomique. Cette combinaison a permis d’acquérir une
compréhension des composants fonctionnels impliqués dans les réseaux de régulation PIAS. Il
s’avère qu’un grand sous-ensemble de gènes / protéines impliqués dans la migration et la
prolifération des cellules sont régulés par tous les membres de la famille PIAS, et suggère une
certaine redondance fonctionnelle parmi ces ligases. De plus, chaque PIAS régule un ensemble
unique de substrats / gènes impliqués dans plusieurs processus cellulaires différents, tels que la
réparation des dommages de l'ADN, le remodelage de la chromatine et la formation de la chaîne
SUMO. Ces résultats suggèrent que chacune des PIASs régule de façon spécifique les fonctions
cellulaires. La combinaison des analyses protéomiques et transcriptomiques ont permi de dresser
un portrait global des mécanismes de régulation régit par les protéines PIAS et ce au-delà de leur
activité enzymatique directe.
|
3 |
Mechanisms Underlying the Regulation and Functions of HDAC7Gao, Chengzhuo 22 July 2008 (has links)
No description available.
|
Page generated in 0.0185 seconds