• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Distributed Support Vector Machine With Graphics Processing Units

Zhang, Hang 06 August 2009 (has links)
Training a Support Vector Machine (SVM) requires the solution of a very large quadratic programming (QP) optimization problem. Sequential Minimal Optimization (SMO) is a decomposition-based algorithm which breaks this large QP problem into a series of smallest possible QP problems. However, it still costs O(n2) computation time. In our SVM implementation, we can do training with huge data sets in a distributed manner (by breaking the dataset into chunks, then using Message Passing Interface (MPI) to distribute each chunk to a different machine and processing SVM training within each chunk). In addition, we moved the kernel calculation part in SVM classification to a graphics processing unit (GPU) which has zero scheduling overhead to create concurrent threads. In this thesis, we will take advantage of this GPU architecture to improve the classification performance of SVM.

Page generated in 0.0982 seconds