• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 44
  • 42
  • 25
  • 15
  • 11
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 385
  • 53
  • 48
  • 47
  • 42
  • 41
  • 40
  • 34
  • 31
  • 31
  • 27
  • 26
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Modeling The Effects Of Variable Coal Properties On Methane Production During Enhanced Coalbed Methane Recovery

Balan, Huseyin Onur 01 June 2008 (has links) (PDF)
Most of the coal properties depend on carbon content and vitrinite reflectance, which are rank dependent parameters. In this study, a new approach was followed by constructing a simulation input database with rank-dependent coal properties published in the literature which are namely cleat spacing, coal porosity, density, and parameters related to strength of coal, shrinkage, swelling, and sorption. Simulations related to enhanced coalbed methane (ECBM) recovery, which is the displacement of adsorbed CH4 in coal matrix with CO2 or CO2/N2 gas injection, were run with respect to different coal properties, operational parameters, shrinkage and swelling effects by using a compositional reservoir simulator of CMG (Computer Modeling Group) /GEM module. Sorption-controlled behavior of coalbeds and interaction of coal media with injected gas mixture, which is called shrinkage and swelling, alter the coal properties controlling gas flow with respect to injection time. Multicomponent shrinkage and swelling effects were modeled with extended Palmer and Mansoori equation. In conclusion, medium-volatile bituminous coal rank, dry coal reservoir type, inverted 5-spot pattern, 100 acre drainage area, cleat permeability from 10 to 25 md, CO2/N2 molar composition between 50/50 % and 75/25 %, and drilling horizontal wells rather than vertical ones are better selections for ECBM recovery. In addition, low-rank coals and dry coal reservoirs are affected more negatively by shrinkage and swelling. Mixing CO2 with N2 prior to its injection leads to a reduction in swelling effect. It has been understood that elastic modulus is the most important parameter controlling shrinkage and swelling with a sensitivity analysis.
212

Silicide fuel swelling behavior and its performance in I2S-LWR

Marquez, Matias G. 21 September 2015 (has links)
The swelling mechanisms of U3Si2 under neutron irradiation in reactor conditions are not unequivocally known. The limited experimental evidence that is available suggests that the main driver of the swelling in this material would be fission gases accumulation at crystalline grain boundaries. The steps that lead to the accumulation of fission gases at these locations are multiple and complex. However, gradually, the gaseous fission products migrate by diffusion. Upon reaching a grain boundary, which acts as a trap, the gaseous fission products start to accumulate, thus leading to formation of bubbles and hence to swelling. Therefore, a quantitative model of swelling requires the incorporation of phenomena that increase the presence of grain boundaries and decrease grain sizes, thus creating sites for bubble formation and growth. It is assumed that grain boundary formation results from the conversion of stored energy from accumulated dislocations into energy for the formation of new grain boundaries.This thesis attempts to develop a quantitative model for grain subdivision in U3Si2 based on the above mentioned phenomena to verify the presence of this mechanism and to use in conjunction with swelling codes to evaluate the total swelling of the pellet in the reactor during its lifetime.
213

Wettability of modified wood

Sedighi Moghaddam, Maziar January 2015 (has links)
Despite many excellent properties of wood which make it suitable for many applications, it suffers from a number of disadvantages limiting its use. For instance, modification is needed to reduce water sorption and to improve decay resistance, dimensional stability and weathering performance. In addition, wood/liquid interaction such as water wettability on wood plays an important role in design and characteristics of many processes and phenomena such as adhesion, coating, waterproofing, wood chemical modification, and weathering. This thesis focuses on enhancing the understanding of wetting of wood, with emphasis on modified wood. The influence of surface chemical composition of wood and its microstructural characteristics on wetting and swelling properties has also been studied. A multicycle Wilhelmy plate technique has been developed to evaluate wetting properties of porous materials, such as wood, in which the samples were subjected to repeated immersions and withdrawals in a swelling liquid (water) and in a non-swelling liquid (octane). This method was utilized to dynamically investigate contact angle, sorption and swelling properties, as well as dimensional stability of unmodified, chemically and surface modified wood samples. Scots pine sapwood and heartwood samples were utilized to establish the principles of the technique. Acetylated and furfurylated wood samples with different level of modification were thereafter examined utilizing the developed technique for wetting measurements. A perimeter model based on a linear combination of the measured force and final change in sample perimeter was suggested to evaluate the dynamic dimensional stability of wood veneers. The feasibility of this method for studying dynamic wettability was investigated by measuring the changes of advancing and receding contact angles over repeated cycles on surface modified wood samples, created by combining liquid flame spray and plasma polymerisation methods. X-ray photoelectron spectroscopy (XPS) and X-ray computed tomography (XCT) were employed to study the surface chemical composition and microstructural properties of the samples, respectively. Three different kinetic regimes were observed in the wetting measurements: i) fast wetting and spreading of the liquid on the wood surface, ii) void filling and wicking and iii) swelling, which was the slowest of the three. The multicycle Wilhelmy plate method was found to be suitable for studying liquid penetration, sorption, and dimensional stability of swelling materials. The results demonstrate that the wetting properties of wood are highly affected by surface chemistry and microstructure. It was shown that using both swelling and non-swelling liquids in wetting measurements allow to distinguish between capillary liquid uptake and swelling. Based on this, for chemically modified samples, it was demonstrated that acetylation mostly reduces swelling, while furfurylation reduces both swelling and capillary uptake. This is in line with the microstructural study with X-ray computed tomography where a significant change in the porosity was found as a result of furfurylation, conversely acetylation left the total porosity values unchanged. Wetting results for hydrophobised wood samples demonstrate that the multi-scale roughness obtained by combination of nanoparticle coating and plasma polymerization increased both the hydrophobicity and the forced wetting durability compared to the micro-scale roughness found on wood modified with plasma polymerisation alone. / <p>QC 20151029</p> / Sustainable wood modification
214

The influence of potassium and calcium species on the swelling and reactivity of a high-swelling South African coal / Anna Catharina Collins

Collins, Anna Catharina January 2014 (has links)
Alkali compounds were added to a South African coal with a high swelling propensity and the behaviour of the blends were investigated. A vitrinite-rich bituminous coal from the Tshikondeni coal mine in the Limpopo province of South Africa was used. To reduce the influence of the minerals in the coal, the coal was partially demineralized by leaching with HCl and HF. The ash content of the coal sample was successfully reduced from 17.7% to 0.6%. KOH, KCl, K2CO3 and KCH3CO2 were then added to the demineralized coal in mass percentages of 1%, 4%, 5% and 10%. The free swelling indices (FSI) of the blends were determined and the samples were subjected to acquisition of TMA and TG-MS data. Addition of these potassium compounds to the demineralized coal reduced the swelling of the vitrinite-rich coal. From the free swelling indices of the various mixtures, it was concluded that the potassium compounds reduce the swelling of the coal in the following order of decreasing impact: KCH3CO2 > KOH > K2CO3 > KCl. From dilatometry experiments done on the blends with the 10% addition of potassium compounds, it was seen that with the addition of potassium compounds to the demineralized coal, a reduction in dilatation volume was obtained. The influence of the potassium compound in decreasing order: K2CO3> KOH> KCH3CO2> KCl. An increase in the softening temperature was observed for the demineralized coal-alkali blends. Thermogravimetric analyses were performed on the demineralized coal-potassium blended samples (<75 μm). These samples were pyrolyzed under a nitrogen atmosphere to a maximum temperature of 1200 °C using a heating rate of 10 °C/min. The relative reactivity for each of the blends with the different wt% addition was determined. From these results it was seen that KCH3CO2 increased the relative reactivity, whereas the KOH, KCl and K2CO3 showed an inhibiting influence. The attached mass spectrometer provided information on the low molecular mass gaseous products formed in the various temperature ranges as the thermal treatment proceeded. From the mass spectroscopy results, it was found that the potassium compounds decreased the temperature at which maximum evolution of H2 takes place. Thermomechanical analyses were performed on the 10 wt% addition of the potassium compounds to the demineralized coal. During TMA analyses, the sample was heated to 1000 °C using a heating rate of 10 °C/min. From the TMA result obtained it was clear that the addition of KCl did not have an influence on the swelling of the demineralized coal. All results are discussed. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
215

Production and Characterization of Wheat Gluten Films

Cousineau, Jamie January 2012 (has links)
Biodegradable, edible wheat gluten films offer a renewable alternative to plastic food packaging or can be incorporated directly in the food product. Wheat gluten is a good option because it forms a fibrous network, lending strength and elasticity to films. The goal of this research project was to produce, with a water-based film formulation and methodology, smooth, homogeneous wheat gluten films with low water vapour permeability (WVP). The water-based film formulation also served to compare the FT Wonder wheat cultivar, grown in Ontario, to commercially produced wheat gluten and determine the effect of wheat source on the film properties, surface morphology, surface hydrophobicity, WVP, and film swelling in water for different pH, temperature and casting surface conditions. Fluorescence, SPR, and casting formulation viscosity provided preliminary information on the mechanism of film formation and on gluten protein structure induced by modifying the film formulation. This research provides an alternate use for some Ontario wheat cultivars based on their properties in films compared to commercial sources of gluten. As a result, using Ontario cultivars to prepare gluten film packaging material has potential as an alternate source of income for Ontario farmers. This research also defines the film properties for gluten films produced from aqueous solutions, helping to identify processing parameters that could bring gluten films on par with plastic packaging and make gluten films a viable alternative food packaging material. Finally, it was determined that the water vapour permeability of wheat gluten films was not correlated to film surface contact angle.
216

Behaviour of alkaline sodic soils and clays as influenced by pH and particle change / Mostafa Chorom.

Chorom, Mostafa January 1996 (has links)
Copies of author's previously published articles inserted. / Bibliography: leaves 173-196. / xviii, 197 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The objective of this thesis is to investigate the factors affecting swelling and dispersion of alkaline sodic soils containing lime and the ways to manage these soils to improve their physical condition. Studies on pure clay systems are included to understand the fundamental process involved in swelling and dispersion of pure and soil clays. / Thesis (Ph.D.)--University of Adelaide, Dept. of Soil Science
217

Estudo de parametros de processo para a sintese de membranas hidrofilicas a base de poli (n-vinil-2-pirrolidona)

MIRANDA, LEILA F. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:12Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:29Z (GMT). No. of bitstreams: 1 06480.pdf: 11629965 bytes, checksum: bb8ef426792486d33f67cd7e2123cc6a (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
218

Damage accumulation and recovery in Xe implanted 4H-SiC / Accumulation et évolution des dégâts dans du 4H-SiC implanté avec des ions xénon

Jiang, Chennan 12 January 2018 (has links)
Le carbure de silicium (SiC) est un matériau qui est considéré comme un semi-conducteur à large bande interdite ou une céramique suivant ses applications en microélectronique ou comme matériau nucléaire. Dans ces deux domaines d'application les défauts générés par l'implantation/irradiation d'ions (dopage, matériau de structure) doivent être contrôlés. Ce travail est une étude des défauts générés par l'implantation de gaz rares suivant les conditions d'implantation (fluence et température). La déformation élastique a plus particulièrement été étudiée dans le cas d'implantation de xénon à des températures pour lesquelles la recombinaison dynamique empêche la transition amorphe. Un modèle phénoménologique basé sur le recouvrement des cascades a été proposé pour comprendre l'évolution de la déformation maximale avec la dose. Des observations complémentaires en particulier par microscopie électronique à transition nous ont permis de préciser la nature des défauts créés et d'étudier leur évolution sous recuit. La formation de cavités a été observée pour des conditions sévères d'implantation/recuit ; ces cavités sont de nature différente (vide ou pleine) suivant la répartition du xénon. Cette étude est également reliée aux propriétés de gonflement sous irradiation, gonflement qui doit être anticipé dans les domaines d'application du SiC. / Silicon carbide is a material that can be considered as a wide band gap semiconductor or as a ceramic according to its applications in microelectronics and in nuclear energy system (fission and fusion). In both fields of application defects or damage induced by ion implantation/ irradiation (doping, material structure) should be controlled. This work is a study of defects induced by noble gas implantation according to the implantation conditions (fluence and temperature). The elastic strain buildup, particularly in the case of xenon implantation, has been studied at elevated temperatures for which the dynamic recombination prevents the amorphization transition. A phenomenological model based on cascade recovery has been proposed to understand the strain evolution with increasing dose and for different noble gases. In addition, with the help of transmission electron microscopy the evolution of defects under subsequent annealing was studied. The formation of nanocavities was observed under severe implantation/annealing conditions. These cavities are of different nature (full of gas or empty) according to the xenon and damage distribution. This study is also linked to swelling properties under irradiation that should be projected in the SiC application fields.
219

Incorporacao e liberacao de resveratrol em hidrogeis polimericos / Resveratrol immobilization and release in polymeric hydrogels

MOMESSO, ROBERTA G.R.A.P. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:38Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:21Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
220

Estudo da estrutura e dos parametros de reticulacao de membranas hidrofilas a base de poli(N-vinil-2-pirrolidona) induzidas por radiacao

LOPERGOLO, LILIAN C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:47:53Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:05Z (GMT). No. of bitstreams: 1 08353.pdf: 6590819 bytes, checksum: 6bd431fef4518d9f2aacc4d2c2809274 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP / FAPESP:97/07146-6

Page generated in 0.0263 seconds