Spelling suggestions: "subject:"saccharomyces cerevisiae -- genetics."" "subject:"accharomyces cerevisiae -- genetics.""
51 |
Functional characterisation of Mss11p, a transcriptional regulator of pseudohyphal development, starch degradation and flocculation in Saccharomyces cerevisiaeBester, Michael C. (Michael Christiaan) 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: The yeast Saccharomyces cerevisiae is able to sense and respond to changes in its
immediate environment. Information regarding the nutritional status of the
extracellular environment is sensed by membrane receptor systems and relayed
through signalling pathways to the nuclear interior, affecting the transcription of
specific genes., Transcription factors, which function downstream of these signal
transduction pathways, have to be transported into the nucleus after synthesis in the
cytoplasm in order to regulate transcriptional events. Transport into the nucleus
occurs in a tightly regulated manner at the nuclear pore complex, which is located in
the nuclear membrane, and requires the recognition of transport signal sequences,
which are present in the proteins that are to be transported. Signalling pathways
control the nuclear accessibility of transcriptional regulators by modifying their
respective signal sequences.
In response to a limited availability of carbon or nitrogen, cells are able to change
their morphology from a unicellular ovoid form to elongated cells attached to each
other. This morphological change is associated with daughter cells that remain
attached to their respective mother cells following unipolar budding, thus forming
filamentous structures referred to as pseudohyphae. The regulation of the
development of pseudohyphae is correlated with other physiological processes, such
as starch degradation and the invasion of agar-containing media. Mss11p performs a
central role in the regulation of the genes required for these processes and it has
been shown to specifically regulate the expression of FL011, which encodes a cell
surface protein critical for pseudohyphal development, and STA2, which encodes an
extracellular glucoamylase functioning in the degradation of starch.
The aim of this study was to characterise the functioning of Mss11p.
Overexpression analysis indicates that Mss11p functions as an inducer of invasive
growth, cell elongation and flocculation. Furthermore, MSS11 deletion improves
biomass formation and suppresses the growth defect of yeast from a L:1278b genetic
background transformed with the RAS2val19 allele on non-fermentable carbon
sources. Biochemical analysis shows that Mss11p is a nuclear protein of
approximately 97 kDa in apparent size that is maintained at relatively low levels in
yeast. Finally, the data suggest a model in which Mss11p functions as a mediator of
the transcriptional regulation of various genes. / AFRIKAANSE OPSOMMING: Die gis Saccharomyces cerevisiae is in staat om veranderinge in sy onmiddelike
omgewing waar te neem en daarop te reageer. Inligting betreffende die
beskikbaarheid van voedingstowwe in die omgewing word vanaf membraan
reseptorsisteme deur middel van seintransduksiekaskades na die nukleus herlei,
waar die transkripsie van spesifieke gene beïnvloed word. Transkripsie faktore wat
stroom af van hierdie seintransduksie funksioneer, moet na die nukleus vervoer word
na vervaardiging in die sitoplasma, om sodoende transkripsionele gebeurtenisse te
reguleer. Die vervoer van faktore na die binnekant van die nukleus vind onder streng
regulering plaas by die nukleêre porie kompleks, wat in die nukleêre membraan
gesitueer is. Vervoer vind plaas deur middel van die herkenning van nukleêre
lokaliseringsekwense wat in die proteïene wat vervoer word, teenwoordig is.
Seintransduksiekaskades beheer die beskikbaarheid van proteïene tot die nukleus
deur hulonderskeidelike nukleêre lokaliseringsekwense te modifiseer.
Selle is in staat om hul morfologie te verander van 'n eensellige eliptiese vorm tot
verlengde selle wat aan mekaar geheg bly in reaksie op die beperkende
beskikbaarheid van koolstof of stikstof bronne. Hierdie morfologiese verandering
word geassosieer met dogterselle wat ná monopolêre botselvorming aan hul
moederselle geheg bly, en dus filamentagtige strukture vorm wat pseudohifes
genoem word. Die regulering van die ontwikkeling van pseudohifes word gekorreleer
met ander fisiologiese prosesse, soos styselafbraak en die penetrerende groei van
selle op agar-bevattende media. Mss11p vervul 'n sentrale rol in die regulering van
gene wat vir hierdie prosesse benodig word en reguleer die uitdrukking van FL011,
wat kodeer vir 'n selwandproteïen wat krities is vir die ontwikkeling van pseudohifes,
en STA2, wat kodeer vir 'n ekstrasellulêre glukoamilase wat vir die afbraak van stysel
benodig word.
Die doel van hierdie studie was om Mss11p-funksie te karakteriseer. Deur middel
van oorproduksie is Mss11p as die induseerder van penetrerende groei,
selverlenging en flokkulasie geïdentifiseer. Verder is bevind dat MSS11-delesie lei tot
verhoogde biomassa formasie, en dat dieselfde delesie lei tot 'n oorkoming van 'n
groeidefek van gis van die 2:1278b genetiese agtergrond wat met die RAS2val19aleel
op nie-fermenteerbare koolstofbronne getransformeer is. Biochemiese analise dui
daarop dat Mss11p 'n nukluêre proteïen is van ongeveer 97 kDa in oënskynlike
grootte, wat teen lae vlakke in gis onderhou word. Die data stel 'n model voor waarin
Mss11p as bemiddelaar optree vir die transkripsionele regulering van verskeie gene.
|
52 |
Genetic analysis of a signal transduction pathway : the regulation of invasive growth and starch degradation in Saccharomyces cerevisiaeVan Dyk, Dewald, 1975- 03 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: Cells of the yeast Saccharomyces cerevisiae are able to change their morphological
appearance in response to a variety of extracellular and intracellular signals. The
processes involved in morphogenesis are well characterised in this organism, but the
exact mechanism by which information emanating from the environment is integrated into
the regulation of the actin cytoskeleton and the yeast cell cycle, is still not clearly
understood. Considerable progress has, however, been made. The processes are
investigated on various levels including: (i) the nature of the signals required to elicit a
morphological adaptation, (ii) the mechanism by which these signals are perceived and
transmitted to the nucleus for gene transcription regulation (signal transduction pathways),
(iii) the role of the cytoskeleton, particularly actin, in morphogenesis, and (iv) the
relationship between cell cycle regulators and factors required for alterations in cellular
shape.
The focus of this study was on elements involved in the regulation of one of these
morphological processes, pseudohyphal formation, in S. cerevisiae. During pseudohyphal
differentiation normal oval yeast cells become elongated and mother and daughter cells
stay attached after cytokinesis to give rise to filaments. These filaments are able to
penetrate the growth substrate, a phenomenon referred to as invasive growth. Actin
remodelling is a prerequisite for the formation of elongated cells during pseudohyphal
development and invasive growth. Its main contribution to this event is the directing of
vesicles, containing cell wall constituents and enzymes, to specific sites of cell wall growth
at the cell periphery. In order to fulfil this cellular function, actin is regulated on several
levels. Signal transduction pathways that are activated in response to external nutritional
signals play important roles in the regulation of the actin cytoskeleton during pseudohyphal
differentiation. For this reason a literature review was compiled to introduce various
aspects of actin-structure, the regulation of this structure and the functions actin performs
during morphogenesis. The connection between signal transduction elements involved in
morphological processes and actin remodelling is also reviewed.
This study entailed the genetic analysis of numerous factors involved in the
regulation of pseudohyphal differentiation, invasive growth and starch metabolism. Several
transcriptional regulators playing a role in these phenomena were investigated. Apart from
the transcription factors, which include Mss11p, Msn1p, Ste12p, F108p,Phd1p and Tec1p,
additional elements ranging from transporters to G-proteins, were also investigated.
Mutant strains deleted for one or more of these factors were constructed and tested to
assess their abilities to form filaments that penetrate the growth substrate, and to utilise
starch as a carbon source. Complex genetic relationships were observed for various
combinations of these factors. Specifically, F108p,Msn1p and Ste12p were shown to act
independently in controlling invasive growth and starch metabolism, suggesting that these
factors are regulated by different signal transduction pathways. Mss11p, on the other hand, was found to play an indispensable role and seems to act as a downstream factor of
Msn1 p, Fl08p, Ste12p and Tec1 p. The exception to this is Phd1 p, since multiple copies of
PHD1 partially suppress the effect of a MSS11 deletion. The data suggests that Mss11 p
functions at the confluence of several signalling pathways controlling the transcriptional
regulation of genes required for invasive growth and starch degradation.
Different nutritional signals were also found to differentially regulate specific
signalling elements during the invasive growth response. For example, Tec1 p requires
Msn1 p activity in response to growth on media containing a limited nitrogen source. This
dependency, however, was absent when invasive growth was tested on glucose and
starch media.
Evidence was also obtained that confirmed the transcriptional co-regulation of
MUC1 and STA2. MUC1 encodes a mucin-like protein that is required for invasive growth
and pseudohyphal differentiation, whereas STA2 encodes a glucoamylase required for
starch degradation. Unpublished results indicated that several transcriptional regulators of
invasive growth also exert an effect on starch metabolism. The data generated during this
study complemented and confirmed published results. It also contributed to the
compilation of a more detailed model, integrating the numerous factors involved in these
signalling processes. / AFRIKAANSE OPSOMMING: Saccharomyces cerevisiae gisselle beskik oor die vermoë om hul morfologiese voorkoms
in responstot 'n verskeidenheid van ekstrasellulêre en intrasellulêre seine te verander. Die
prosesse betrokke by morfogenese is goed gekarakteriseerd in hierdie organisme, maar
die presiese meganisme waardeur inligting vanuit die omgewing geïntegreer word in die
reguleringvan die aktien-sitoskelet en die gisselsiklus, word nog nie ten volle verstaan nie.
Aansienlike vordering in die verband is egter gemaak. Die prosesse word op verskeie
vlakke ondersoek, insluitende: (i) die aard van die seine wat benodig word om 'n
morfologiese aanpassing te inisïeer; (ii) die meganisme waardeur hierdie seine
waargeneem en herlei word na die selkern vir die regulering van geen-transkripsie
(seintransduksie paaie); (iii) die rol van die sitoskelet, spesifiek aktien, in morfogenese en
(iv) die verhouding tussen selsiklusreguleerders en faktore wat benodig word vir
verandering in selvorm.
Hierdie navorsing fokus op elemente betrokke by die regulering van een van hierdie
morfologiese prosesse in S. cerevisiae, naamlik pseudohife-vorming. Gedurende
pseudohife-differensiëring neem tipiese ovaalvormige selle 'n verlengde voorkoms aan wat
tot die vorming van filamente lei. Hierdie filamente is in staat om die groeisubstraat te
penetreer, 'n verskynsel bekend as penetrasie-groei. Aktienherrangskikking is 'n
voorvereiste vir die vorming van verlengde selle tydens pseudohife-ontwikkeling. Die
hoofbydrae van aktien tot hierdie verskynsel is die oriëntering van uitskeidingsvesikels,
wat selwandkomponente en ensieme bevat, na spesifieke areas van selwandgroei op die
seloppervlak. Aktien word op verskeie vlakke gereguleer om hierdie sellulêre funksie te
vervul. Seintransduksiepaaie wat geaktiveer word in respons tot ekstrasellulêre
voedingsseine speel 'n belangrike rol in die regulering van die aktien-sitoskelet tydens
pseudohife-differensiëring. Op grond hiervan is 'n literatuuroorsig saamgestel vir die
bekendstelling van verskeie aspekte van aktienstruktuur, die regulering van hierdie
strukture en die funksies wat deur aktien gedurende morfogenese vervul word. Die
verband tussen seintransduksie-elemente betrokke by morfologiese prosesse en aktien
herrangskikkingword ook behandel.
Hierdie studie het die genetiese analisering van verskeie faktore betrokke by
pseudohife-differensiëring, penetrasie-groei en styselmetabolisme, behels. Verskeie
transkripsionele reguleerders wat In rol speel in hierdie prosesse was bestudeer. Buiten
die transkripsiefaktore Mss11p, Msn1p, Ste12p, F108p,Phd1P en Tec1p, was addisionele
faktore, wat gewissel het van transporters tot G-proteïene, ook ondersoek. Mutante-rasse
met geendelesies vir een of meer van hierdie faktore is gekonstrueer en getoets om vas te
stel hoe dit hul vermoë raak om penetrerende filamente te vorm, asook om te bepaal of
stysel as koolstofbron gebruik kan word. Komplekse genetiese interaksies vir verskeie
kombinasies van hierdie faktore is waargeneem. Dit was waargeneem dat F108p,Msn1p en Ste12p onafhanklik funksioneer tydens die regulering van penetrasie-groei en
styselmetabolisme, wat impliseer dat hierdie faktore deur verskillende
seintransduksiepaaie gereguleer word. Mss11 p word beskou as In onmisbare rolspeler in
hierdie prosesse en dit kom voor asof hierdie protein as 'n stroom-af faktor is en vereis
word vir die funksionering van Msn1p, F108p, Ste12p en Tec1p. Phd1p is egter 'n
uitsondering, aangesien veelvuldige kopieë van PHD1 die effek van 'n MSS11-delesie
gedeeltelik oorkom. Die data impliseer dat Mss11 p by die samevloei van verskeie
seintransduksiepaaie, benodig vir die transkripsionele regulering van gene betrokke by
penetrasie-groei en styselmetabolisme, funksioneer.
Dit was ook waargeneem dat verskillende voedingsseine die faktore betrokke by die
penetrasie-groeirespons differensieel reguleer. Tec1 p byvoorbeeld benodig Msn1paktiwitieit
in respons tot groei op media met 'n beperkte stikstofbron. Hierdie afhanklike
interaksie is egter afwesig wanneer penetrasie-groei bestudeer word op glukose- en
styselmedia.
Resultate wat die gesamentlike transkripsionele regulering van MUC1 en STA2
bevestig, is ook verkry. MUC1 kodeer vir 'n mukienagtige proteïen wat benodig word vir
pseudohife-vorming en penetrasie-groei, terwyl STA2 kodeer vir 'n glukoamilase
essensieël vir styselafbraak. Ongepubliseerde resultate dui daarop dat verskeie
transkripsionele reguleerders van penetrasie-groei ook In effek uitoefen op
styselmetabolisme. Die data wat gegenereer is tydens hierdie studie komplementeer en
bevestig reeds gepubliseerde resultate. Dit het ook bygedra tot die samestelling van 'n
gedetaileerde model wat die verskillende faktore, betrokke by hierdie
seintransduksieprosesse, integreer.
|
53 |
Transcriptional repression mechanisms of sporulation-specific genes in saccharomyces cerevisiaeReodica, Mayfebelle, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
For organisms undergoing a developmental process it is ideal that specific genes are induced and repressed at the correct time and to the correct level in a coordinated manner. The process of meiosis and spore formation (collectively known as sporulation) in Saccharomyces cerevisiae provides a convenient system to elucidate transcriptional mechanisms of gene repression and the contribution such repression mechanisms offer to cells capable of undergoing a developmental process. This thesis focuses on transcriptional repression of sporulation-specific genes during both vegetative/mitotic conditions and sporulation. The fitness contribution of transcriptional repressors that regulate sporulationspecific genes during vegetative growth were investigated considering the similarities between meiosis and mitosis such as DNA replication, chromosome segregation and cytokinesis. Well-characterised sporulation genes of different functions were expressed in vegetative cells and ectopic expression of these genes was found not to be lethal. It was ascertained through strain competition studies that ectopic expression of the genes IME1, SMK1, SPR3 and DIT1 during mitotic growth did not affect cellular fitness. The expression of NDT80 in vegetative cells, however, caused a marked reduction in fitness and cells were also further compromised in the absence of the Sum1p repressor that regulates NDT80 transcription. The role of NDT80 as a transcriptional activator of middle sporulation genes, rather than the over-expression of NDT80 as a protein, caused the reduction of cell viability. Transcriptional regulation of the middle sporulation-specific gene SPR3 by the meiosis-specific Set3p repressor complex was investigated using synchronous sporulation cultures of the W303a/?? strain commonly used for sporulation studies. In a mutant W303a/?? ??set3/??set3 strain, lacking a key component of the Set3p repression complex, the transcription of SPR3 was uncharacteristically expressed at higher levels and derepressed during late sporulation. This SPR3 expression was consistent for both SPR3 transcript and SPR3::lacZ reporter protein studies. This preliminary work will enable future studies, using SPR3 promoter deletions fused to a lacZ reporter, aimed at determining the region of the SPR3 promoter that the Set3p complex may interact with to transcriptionally repress the gene during sporulation.
|
54 |
Functional characterization of the Saccharomyces cerevisiae SKN7 and MID2 genes, and their roles in osmotic stress and cell wall integrity signalingKetela, Troy W. January 1999 (has links)
The yeast SKN7 gene encodes a transcription factor that is involved in a variety of processes in cell physiology including cell wall synthesis, cell cycle progression, and oxidative stress resistance. Using a transcriptional reporter-based system, it has been demonstrated that Skn7p is regulated by the two-component osmosensor Sln1p in a manner that requires the phosphorelay molecule Ypd1p, but not the response regulator Ssk1p. Consistent with its regulation by an osmosensor, Skn7p is involved in negative regulation of the osmoresponsive HOG MAP kinase cascade. Cells lacking SKN7 and the protein serine/threonine phosphatase encoded by PTC1 are severely disabled for growth, and hyperaccumulate intracellular glycerol. The growth defect of skn7Delta ptc1Delta mutants can be bypassed by overexpression of specific phosphatase genes, or by deletion of the HOG MAP kinase pathway-encoding genes PBS2 or HOG1. / MID2 was isolated in a screen designed to identify upstream regulators of Skn7p. Mid2p is an extensively O-mannosylated protein that is localized to the plasma membrane. Mutants with defective beta-1,6-glucan synthesis grow more quickly when MID2 is absent. Conversely, MID2 is essential for viability in cells lacking FKS1, the gene encoding the primary catalytic subunit of beta-1,3-glucan synthase. mid2Delta mutants are resistant to calcofluor white, a drug that interferes with cell wall chitin synthesis, while cells overexpressing MID2 are supersensitive to the drug. mid2Delta mutants have a significant reduction in stress-induced chitin synthesis, while cells overexpressing MID2 hyperaccumulate cell wall chitin. Consistent with a proposed role in sensing and responding to cell wall stress, high copy expression of specific components of the cell wall integrity MAP kinase cascade suppress various mid2Delta phenotypes, and Mid2p is essential for full activation of the Mpk1p MAP kinase during various cell wall stress and morphogenic conditions. / Observations from genetic and biochemical experiments suggest that Mid2p is a regulator of the small G-protein encoded by RHO1. Deletion of MID2 is lethal to mutants lacking the Rho1p GEF Rom2p, but suppresses the low temperature growth defect of mutants lacking the Rho1p GAP Sac7p. Conversely, high copy expression of MID2 is a strong suppressor of mutants lacking TOR2, an upstream activator of Rom2p, but is toxic to sac7Delta mutants. High copy expression of MID2 causes increased GEF activity towards Rho1p. Mid2p appears to act in parallel to Rom1p and Rom2p in promoting GDP-GTP exchange for Rho1p in a mechanism that is not yet understood.
|
55 |
Transcriptional repression mechanisms of sporulation-specific genes in saccharomyces cerevisiaeReodica, Mayfebelle, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
For organisms undergoing a developmental process it is ideal that specific genes are induced and repressed at the correct time and to the correct level in a coordinated manner. The process of meiosis and spore formation (collectively known as sporulation) in Saccharomyces cerevisiae provides a convenient system to elucidate transcriptional mechanisms of gene repression and the contribution such repression mechanisms offer to cells capable of undergoing a developmental process. This thesis focuses on transcriptional repression of sporulation-specific genes during both vegetative/mitotic conditions and sporulation. The fitness contribution of transcriptional repressors that regulate sporulationspecific genes during vegetative growth were investigated considering the similarities between meiosis and mitosis such as DNA replication, chromosome segregation and cytokinesis. Well-characterised sporulation genes of different functions were expressed in vegetative cells and ectopic expression of these genes was found not to be lethal. It was ascertained through strain competition studies that ectopic expression of the genes IME1, SMK1, SPR3 and DIT1 during mitotic growth did not affect cellular fitness. The expression of NDT80 in vegetative cells, however, caused a marked reduction in fitness and cells were also further compromised in the absence of the Sum1p repressor that regulates NDT80 transcription. The role of NDT80 as a transcriptional activator of middle sporulation genes, rather than the over-expression of NDT80 as a protein, caused the reduction of cell viability. Transcriptional regulation of the middle sporulation-specific gene SPR3 by the meiosis-specific Set3p repressor complex was investigated using synchronous sporulation cultures of the W303a/?? strain commonly used for sporulation studies. In a mutant W303a/?? ??set3/??set3 strain, lacking a key component of the Set3p repression complex, the transcription of SPR3 was uncharacteristically expressed at higher levels and derepressed during late sporulation. This SPR3 expression was consistent for both SPR3 transcript and SPR3::lacZ reporter protein studies. This preliminary work will enable future studies, using SPR3 promoter deletions fused to a lacZ reporter, aimed at determining the region of the SPR3 promoter that the Set3p complex may interact with to transcriptionally repress the gene during sporulation.
|
56 |
The deletion and overexpression of two esterase genes, IAH1 and TIP1, in Saccharomyces cerevisiae to determine their effects on the aroma and flavour of wine and brandyHignett, Jason Satch 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: No single chemical constituent can be accredited with giving wine and brandy their
overall aroma and flavour. The aroma and flavour of wine and brandy are rather
attributed to a number of chemical constituents reacting together and it is these
reactions that give the beverage its character. Certain chemicals within wine and
brandy do, however, make larger contributions to the flavour. These include the
esters, terpenes and volatile acids, although others also exist.
Esters are a large group of volatile compounds with variable aroma and flavour
characteristics, including banana-like (isoamyl acetate), apple-like (ethyl caproate)
and chemical/solvent-like (ethyl acetate). Esters are produced as secondary
metabolites during the conversion of sugar to ethanol and are formed when an
alcohol binds with a fatty acid. Chemically, ester metabolism is well documented and
understood; however, much work still needs to be done on a genetic level. The yeast
strain used during fermentation is one of the most important factors contributing to
the type and quantity of esters produced. This is due to differences in genetic
makeup. The metabolism of esters is controlled largely on a genetic level, with
numerous genes being involved. The alcohol acetyltransferase genes are involved in
ester anabolism, whilst esterase genes are involved in ester catabolism. Esterases
have a negative effect on the overall level of esters within an alcoholic beverage, as
they are capable of reducing the number of esters and are thus capable of altering
the beverage's aroma and flavour profile. The IAH1 and the TIP1 gene products are
believed to encode for two such esterases.
The objective of this study was to investigate the contribution of the IAH1 and
TIP1 genes to the level of esters in both wine and brandy. This was accomplished by
using two approaches. Firstly, the above genes were disrupted using a polymerise
chain reaction (PCR)-generated disruption cassette homologous to either the IAH1 or
the TIP1 gene. These cassettes were integrated into the industrial wine yeast,
Saccharomyces cerevisiae strain VIN13. The integrations were verified by Southern
blot analysis to produce yeasts VIN13-~IAH1 and VIN13-~TIP1; however, only a
single copy of each was disrupted. Secondly, the IAH1 and the TIP1 genes were
cloned from S. cerevisiae using PCR into plasmid pj between the phosphoglycerate
kinase gene (PGK1) promoter and terminator, producing plasmids pJ-IOE1 and
pJ-TOE1. The PGK1 promoter has previously been shown to constitutively express
genes at high levels. These new constructs were then used as template for PCR to
produce two overexpression cassettes, one for IAH1 and the other for TlP1. These
cassettes were integrated into S. cerevisiae VIN13 and verified by Southern blot
analysis to produce strains VIN13-IOE1 and VIN13-TOE1.
The above yeast strains including VIN13 were used for the production of wines
and base wines from Colombard must. Reverse-transcriptase (RT-PCR) confirmed
that the VIN13-IOE1 and VIN13-TOE1 strains overexpressed the appropriate gene at a higher level than the control VIN13 strain. The VIN13-AIAH1 disrupted strain
showed no difference in expression level to that of the control strain, whilst
VIN13-ATIP1 showed lower levels of expression than that of the control strain.
VIN13-IOE1 behaved as expected, with a decrease of between 30% and 60% in the
total ester level in the wine and base wine respectively, a 30% decrease in the total
acid level and no change in the higher alcohol level. The VIN13-AIAH1 strain showed
no difference to the control wine, most likely as this strain still expressed the IAH1
gene at levels consistent with the control strain. VIN13-TOE1 behaved in an
unexpected manner - instead of hydrolysing esters, it appeared to produce them.
This increase in the total ester level was most noticeable during distillation, when a
20% increase took place. Another unexpected occurrence was a large decline in the
total acid level, with acetic acid being the most significant contributor, decreasing by
up to 78%. This is a very favourable finding, as acetic acid is a known spoilage
molecule and is a cause of sluggish/stuck fermentations. VIN13-ATIP1 behaved in an
opposite manner to VIN13-TOE1, with higher total acid levels and slightly decreased
total ester levels, especially during distillation. Neither affected the total higher
alcohol levels. Sensorially, the only significant difference in the wine samples was for
the fruity flavour. A panel of judges distinguished that VIN13-TOE1 was fruitier than
the other wines, with VIN13-ATIP1 being the least fruity.
This study again proves the significant impact that a single gene can have on the
chemical makeup of wine and brandy. The relatively simple genetic alteration of an
organism can drastically change and improve not only the organoleptic properties of
the organism, but its viability as well. These alterations can produce more favourable
organisms with more desirable characteristics for the fermenting beverage industry to
produce products of higher quality and better suitability. / AFRIKAANSE OPSOMMING: Geen chemiese komponent kan uitgesonderword as die produseerder van aroma en
geur in wyn of brandewyn nie. Die aroma en geur van wyn en brandewyn word
eerder toegeskryf aan die interaksie tussen 'n groot aantal chemiese komponente
om aan die drank sy karakter te gee. Enkele van hierdie chemiese komponente sluit
in esters, terpene en vlugtige sure, om maar 'n paar te noem.
Esters is "n groot groep van vlugtige verbindings wat beskik oor 'n
verskeidenheid van aroma- en geurkenmerke, soos piesangagtig (isoamielasetaat),
appelagtig (etielkaproaat) en chemies/oplosmiddelagtig (etielasetaat). Esters word as
sekondêre metaboliete geproduseer wanneer suikers na etanolomgeskakel word en
word gevorm wanneer "n alkohol met "n vetsuur verbind. Estermetabolisme is
chemies goed beskryf en verstaan, maar op "n genetiese vlak is daar nog heelwat
aspekte wat nagevors moet word. Die gisras betrokke gedurende fermentasie word
beskou as een van die grootse bydraes tot die tipe en die hoeveelheid esters wat
geproduseer word. Dit word toegeskryf aan verskille in die genetiese saamestelling
van die gisras. Ester metabolisme word grootliks deur genetiese faktore beheer en
verskeie gene is betrokke. Dit is hoofsaaklik die alkoholasetieltransferasegene wat vir
esterkatabolisme verantwoordelik is, terwyl die esterasegene vir esteranabolisme
verantwoordelik is. Esterases het 'n negatiewe effek op die totale estervlak binne
alkoholiese dranke deurdat hulle in staat is om die aantal esters drasties te verminder
en sodoende die drank se aroma- en geurprofiel te verander. Daar is voorgestel dat
die IAH1- en die TlP1-geen produkte is wat vir twee sulke esterases kodeer.
Die doel van hierdie studie was om die IAH1- en die TIP1-gene se bydrae tot die
totale estervlak in wyn en brandewyn te ondersoek. Dit is deur twee benaderings
uitgevoer. Eerstens is die bogenoemde gene d.m.V. disrupsiekassette wat homoloog
aan die IAH1- of die TlP1-gene was, uitgeslaan. Die disrupsiekassette is deur die
polimerasekettingreaksie (PKR) geproduseer. Hierdie kassette is in die industriële
wyngis, Saccharomyces cerevisiae VIN13, geïntegreer. Die integrasies is deur
Southernkladanalise bevestig en het die giste VIN13-~IAH1 en VIN13-~TIP1
gelewer. Net 'n enkele kopie van elke geen is egter uitgeslaan. Tweedens is die
IAH1- en TIP1-gene d.m.V. PKR vanaf S. cerevisiae binne in plasmied pJ gekloneer,
tussen die fosfogliseraatkinasegeen (PGK1) se promotor en termineerder, om
plasmiede pJ-IOE1 en pJ-TOE1 te produseer. Die PGK1-promotor is al tevore
geïdentifiseer as "n hoë-vlak konstitutiewe uitdrukker van gene. Hierdie twee nuwe
konstrukte het vervolgens gedien as templaat vir PKR om twee
ooruitdrukkingskassette, een vir IAH1 en die ander vir TIP1, te produseer. Hierdie
kassette is in S. cerevisiae VIN13 geïntegreer en bevestig deur Southernkladanalise.
Hierdie integrasies het die giste VIN13-IOE1 en VIN13-TOE1 geproduseer.
All die nuwe gisrasse, tesame met VIN13, is gebruik vir die produksie van wyne
sowel as rebatwyne vanaf Colombard-mos. Omgekeerde-transkriptase polimerasekettingreaksie (OT-PKR) het bewys dat die VIN13-IOE1 en VIN13-TOE1
rasse die geskikte geen ooruitgedruk het, met hoêr vlakke as van die kontrole
VIN13-ras. Dit het ook aangedui dat die VIN13-i\IAH1-ras, waarvan die geen
uitgeslaan was, geen verskil in uitdrukking gehad het in vergelyking met die
kontroleras nie, terwyl VIN13-i\TIP1 'n lae uitdrukkingsvlak getoon het. VIN13-IOE1
het teen verwagting opgetree, met 'n afname van tussen 30% en 60% in die totale
estervlak in beide die wyne en rebatwyne. 'n Afname van 30% in die totale suurvlak,
asook geen waarneembare verskil in die hoêr alkoholvlak, in vergelyking met die
kontroleras, is ook opgemerk. Die VIN13-i\IAH1-ras het glad nie van die kontroleras
verskil nie, heel waarskynlik omdat hierdie ras die IAH1-geen teen dieselfde vlak as
die kontroleras kon uitdruk. Die VIN13-TOE1-ras het teen verwagting opgetree
deurdat dit esters geproduseer het i.p.v. om esters te hidroliseer. Hierdie toename in
die totale estervlak is die meeste waarneembaar tydens distillasie, met tot 'n 20%
toename. Nog 'n onverwagte effek was die groot afname in die totale suurvlak. met
asynsuur wat die betekenisvolste bydrae gelewer het deurdat dit 'n afname van tot
78% getoon het. Hierdie bevinding is baie voordelig, aangesien asynsuur, 'n bekende
bederfmolekuul, veral vir slepende/gestaakte fermentasies verantwoordelik is.
VIN13-i\TIP1 het op die teenoorgestelde wyse opgetree as VIN13-TOE1, met 'n hoêr
totale suurvlak en 'n klein afname in die totale estervlak. Weereens is dit meer
gedurende distillasie waargeneem. Beide rasse het egter geen effek op die hoêr
alkoholvlak gehad nie. Die proepaneel het, met betrekking tot die vrugtige geur, een
betekenisvolle geurverskil tussen die wyne gevind. VIN13-TOE1 was meer vrugtig as
al die ander wyne en VIN13-i\TIP1 was die minste vrugtig.
Die studie het weereens bewys dat 'n enkele geen 'n betekenisvolle effek op die
chemiese samestelling van wyn en brandewyn kan hê. Die relatief eenvoudige
genetiese verandering van 'n organisme kan die organoleptiese eienskappe asook
die lewensvatbaarheid van "n organisme, drasties verander en verbeter.
|
57 |
Molecular genetic analysis of the saccharomyces cerevisiae Mat LocusPorter, Susan Dorothy January 1987 (has links)
The MAT∝ locus of the yeast Saccharomyces cerevisiae encodes two regulatory proteins responsible for determining the ∝cell type. The MAT∝1 gene encodes ∝1, a positive regulator of ∝cell-specific genes, whereas the MAT∝2 gene encodes a negative regulator of a cell-specific genes (∝2). MAT∝2. (in conjunction with the MATα1 gene) also determines the α/∝ diploid cell type by repressing haploid-specific genes. ∝2 exerts its effect at the transcriptional level in the ∝ cell by binding to a sequence located upstream of α cell-specific genes.
The present study undertook to examine, through in vitro genetic manipulation, the structure/function relationship of the MAT∝ regulatory proteins, particularly∝2, in their role as gene regulators. The construction of mutant MAT∝2 genes containing termination codons at various points within the gene, and subsequent transformation of the mutant genes into mat∝2 yeast, indicated that the carboxy-terminal one-third of the gene product was necessary for full repressor activity in the haploid as well as in the diploid.
A segment within the carboxy-terminal one-third of ∝2 displays some homology to the higher eukaryote homeo domain as well as to a prokaryotic bihelical DNA-binding structural motif. This region of the gene was subjected to semi-random missense mutagenesis in vitro and the mutant genes were analyzed by transformation into strains containing chimaeric genes that encode β-galactosidase from ∝2 and a1/∝2. repressible promoters.
In this manner it was demonstrated that most of those residues in ∝2. which correspond to conserved amino acids in the prokaryotic DNA-binding structure and in the homeo domain are essential for the two repressor activities of ∝2. Several mutations more severely affected the ability of ∝2 to repress α-specific genes than haploid-specific genes.
Analysis of the temperature dependence of the activities of some of the mutants was consistent with the existence of a helix-turn-helix structure at this region of the protein. Finally, further analysis of some of these mutants in vitro confirmed that the observed defect correlated with a loss of DNA-binding activity. / Medicine, Faculty of / Biochemistry and Molecular Biology, Department of / Graduate
|
58 |
Functional characterization of the Saccharomyces cerevisiae SKN7 and MID2 genes, and their roles in osmotic stress and cell wall integrity signalingKetela, Troy W. January 1999 (has links)
No description available.
|
59 |
The role of CBP/14-3-3 in the regulation of initiation of DNA replication in budding yeast /Yahyaoui, Wafaa. January 2007 (has links)
No description available.
|
60 |
Transcriptional regulation of the endo-polygalacturonase-encoding gene in Saccharomyces cerevisiaeLouw, Campbell Trout 03 1900 (has links)
Thesis (PhD (Science) (Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Wine fermentation with a yeast strain able to degrade grape cell polysaccharides can
result in improved processability and an increase in wine quality by improving extraction
of essential compounds from the grapes during the maceration stage. Pectin is the only
important cell wall polysaccharide that can be degraded by wild-type Saccharomyces
cerevisiae strains. Pectin is degraded by a polygalacturonase (PG) encoded by the
PGU1 gene (ORF YJR153W). Only certain S. cerevisiae strains can degrade pectin and
PG activity is thus strain specific. The lack of activity in certain strains has been
attributed to a number of factors: (1) the complete absence of the PGU1 gene, (2) the
PGU1 gene is present but the allele is dysfunctional and (3) the PGU1 gene is present
but not transcribed. The lack in transcription has been shown to be due to the gene
having a dysfunctional promoter or to regulatory differences between strains. Results
published in the literature are contradictory. The primary aim of this investigation was to
clarify the regulation of PG activity in S. cerevisiae and to determine why there are
differences in PG activity between different strains. Regulation of PG activity between
several wine and laboratory strains with varying PG activities was compared by looking
at the sequence of the PGU1 gene and its promoter as well as transcription levels of
this gene and its main transcription factors, TEC1 and STE12. In order to identify
regulatory factors influencing PG activity, the S. cerevisiae genome was screened for
activators and inhibitors of PG activity. Fourteen inhibitors and two activators of PG
activity were identified during this screen. Real-time PCR analysis showed that the PG
activity is regulated by transcription of the PGU1 gene. A linear relationship was
demonstrated between PGU1 and its two transcription factors TEC1 and STE12. Some
of the genes identified as inhibitors of PGU1 transcription are involved in gene silencing
by Telomere Position Effect (TPE) indicating that PGU1 is possibly silenced due to its
subtelomeric location within 25 kb from the right telomere of chromosome X. Moving the
PGU1 gene with its native regulatory machinery to a different position away from its
telomere resulted in an increase in PGU1 transcription and PG activity, demonstrating
the epigenetic influence on PGU1 regulation. Results from this study suggested that the
strain related difference in PGU1 expression occurs at an epigenetic level, with steric
hindrance preventing RNA polymerase access to the PGU1 promoter and thus inhibiting
transcription of this gene in some strains. Understanding regulation of PG activity can potentially lead to the development of more
effective strategies to improve PG degradation by S. cerevisiae. The genetic model
describing regulation of PGU1 transcription was extended by this study and a novel
mechanism of regulation of PG activity was identified.
The secondary aim of this study written as an addendum to this thesis, focussed on
degradation of another grape cell wall polysaccharide xylan by recombinant strains of S.
cerevisiae. These strains were enabled to degrade this polysaccharide through
heterologous expression of novel xylanase encoding genes from various origins.
Xylanase activity of the recombinant strains generated was compared. Overexpressing
the complete gene xynA of Ruminococcus flavefaciens, the functional domain xynAa or
the functional domain xynAc within optimal conditions for these enzymes all conferred
very low xylanase activity to S. cerevisiae, with xynAc resulting in the highest xylanase
activity. Since overexpression of the R. flavefaciens xynA gene yielded very low activity
under optimal conditions activity in wine making conditions would be negligible. The
genes XYN2 and XYN4 from Trichoderma reesei and Aspergillus niger respectively
yielded higher levels of activity. According to these results, only the expression of XYN2
and XYN4 could have a potential effect on wine
An effective strategy for improving pectin degradation can in future potentially be
combined with heterologous expression of a xylanase encoding gene in S. cerevisiae in
order to engineer a wine yeast strain with improved polysaccharase abilities. / AFRIKAANSE OPSOMMING: Gisting van druiwe met polisakkaried-afbrekende gisrasse kan lei tot ‘n verbetering in
wyn prosessering en tot die produksie van hoër kwaliteit wyne deur die ekstraksie van
belangrike wynkomponente uit druifselle te verbeter. Pektien is die hoof komponent van
die druifselwand wat deur wilde tipe Saccharomyces cerevisiae giste afgebreek kan
word en word afgebreek deur ‘n poligalaktoronase (PG) wat deur die PGU1 (YJR153W)
geen gekodeer word. Slegs spesifieke gisrasse kan pektien afbreek en die ensiem
aktiwiteit is dus ras-spesifiek. Die gebrek aan PG aktiwiteit in sekere rasse is al omskryf
as gevolg van die afwesigheid van die geen, die teenwoordigheid van ‘n nie-funksionele
alleel of dat die geen wat teenwoordig is nie uitgedruk word nie. Transkripsie is al
bewys om nie plaas te vind nie a.g.v. die teenwoordigheid van ‘n nie-funksionele
promotor of a.g.v. ‘n verskil in regulering van transkripsie tussen rasse. Sommige
studies wat PG regulering ondersoek het, het teenstrydige resultate verkry. Die
hoofdoel van hierdie studie was om PG regulering te ondersoek en te bepaal waarom
daar verskille in PG aktiwiteit tussen verskillende gisrasse voorkom. Regulering van PG
aktiwiteit is ondersoek tussen wyn en laboratorium gisrasse met wisselende vlakke van
PG aktiwiteit deur die DNS volgorde van die PGU1 geen en sy promotor, so wel as die
DNS volgorde van die geen se hoof transkripsie faktore TEC1 en STE12 te bepaal. Om
reguleerders van PG aktiwiteit te identifiseer is die genoom van die gis S. cerevisiae
ondersoek om faktore te identifiseer wat PG aktiwiteit aktiveer of inhibeer. “Real-time
PCR” het bewys dat PG aktiwiteit gereguleer word deur transkripsie van die PGU1 geen
en dat daar ‘n lineêre verhouding tussen die transkripsie van die PGU1 geen en sy twee
hoof transkripsie faktore TEC1 en STE12 bestaan. Sommige van die gene wat
geïdentifiseer is as inhibeerders van PG aktiwiteit is voorheen bewys om betrokke te
wees by die inhibering van transkripsie deur middel van die telomeer posisie effek, dit
dui daarop dat transkripsie van die PGU1 geen moontlik geïnhibeer word as gevolg van
die geen se subtelomeriese posisie binne 25 kb vanaf die regter telomeer van
chromosoom X. Die PGU1 geen is met sy natuurlike regulerings elemente na ‘n ander
posisie in die genoom, weg van sy naaste telomeer geskuif, die verandering in posisie
van die geen het gelei tot ‘n toename in PG aktiwiteit en transkripsie van die PGU1
geen en het dus bewys regulering word beïnvloed deur ‘n epigenetiese effek. Die
resultate van hierdie studie het daarop gedui dat die verskil in transkripsie van die
PGU1 geen plaasvind op ‘n epigenetiese vlak waartydens die chromatien struktuur toegang van die RNA polimerase tot die PGU1 geen voorkom en dus word transkripsie
van die geen sodoende in sommige rasse voorkom.
Die tweede doelwit van hierdie studie het gefokus op die afbraak van ‘n ander
komponent van die druif selwand, xilaan, deur S. cerevisiae. Hierdie navorsing vorm ‘n
addendum aan die tesis en Xylanase aktiwiteit van verskeie rekombinante rasse is in
hierdie studie vergelyk. Baie lae xylanase aktiwiteit is verleen aan rekombinante giste
wat die volledige xynA geen gekloneer van die bakteriee Ruminococcus flavefaciens,
asook twee aktiewe domeins van die geen, domein xynAa en domein xynAc uitdruk.
Van die voorafgenoemde giste het die uitdrukking van die domein xynAc die
rekombinante gis ras met die hoogste aktiwiteit tot gevolg gehad. Ooruitdrukking van
die gene XYN2 en XYN4 wat gekloneer is van die fungi Trichoderma reesei en
Aspergillus niger onderskeidelik, het beide gisrasse wat oor hoë vlakke van xylanase
aktiwiteit beskik tot gevolg gehad. Hierdie resultate dui dus daarop dat van die gene
ondersoek in die studie, slegs XYN2 en XYN4 potensiaal het om xylanase aktiwiteit van
wyngiste te verbeter.
Deur die regulering van PG aktiwiteit te bestudeer kan meer effektiewe strategieë
potensieel ontwikkel word om PG aktiwiteit in S. cerevisiae te verbeter. Hierdie studie
het die genetiese model wat PG regulering omskryf uitgebrei deur ‘n nuwe meganisme
van regulering van toepassing op PGU1 te identifiseer.
As ons die regulering van die PGU1 goed verstaan kan dit in die toekoms gekombineer
word met ‘n effektiewe strategie om ‘n gis aan te pas om xylaan af te breek, om
sodoende ‘n wyngis geneties te verbeter om beide xylaan en pektien te kan afbreek.
|
Page generated in 0.0991 seconds