• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machine Learning, Optimization, and Anti-Training with Sacrificial Data

Valenzuela, Michael Lawrence January 2016 (has links)
Traditionally the machine learning community has viewed the No Free Lunch (NFL) theorems for search and optimization as a limitation. I review, analyze, and unify the NFL theorem with the many frameworks to arrive at necessary conditions for improving black-box optimization, model selection, and machine learning in general. I review meta-learning literature to determine when and how meta-learning can benefit machine learning. We generalize meta-learning, in context of the NFL theorems, to arrive at a novel technique called Anti-Training with Sacrificial Data (ATSD). My technique applies at the meta level to arrive at domain specific algorithms and models. I also show how to generate sacrificial data. An extensive case study is presented along with simulated annealing results to demonstrate the efficacy of the ATSD method.

Page generated in 0.0579 seconds