Spelling suggestions: "subject:"sacrificial data"" "subject:"sacrificial mata""
1 |
Machine Learning, Optimization, and Anti-Training with Sacrificial DataValenzuela, Michael Lawrence January 2016 (has links)
Traditionally the machine learning community has viewed the No Free Lunch (NFL) theorems for search and optimization as a limitation. I review, analyze, and unify the NFL theorem with the many frameworks to arrive at necessary conditions for improving black-box optimization, model selection, and machine learning in general. I review meta-learning literature to determine when and how meta-learning can benefit machine learning. We generalize meta-learning, in context of the NFL theorems, to arrive at a novel technique called Anti-Training with Sacrificial Data (ATSD). My technique applies at the meta level to arrive at domain specific algorithms and models. I also show how to generate sacrificial data. An extensive case study is presented along with simulated annealing results to demonstrate the efficacy of the ATSD method.
|
Page generated in 0.0579 seconds