• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Study in Chaotic Dynamical Systems and Mechanisms for Pattern Generation in Three-Cell Networks

Xing, Tingli 11 August 2015 (has links)
A computational technique is introduced to reveal the complex intrinsic structure of homoclinic and heteroclinic bifurcations in a chaotic dynamical system. This technique is applied to several Lorenz-like systems with a saddle at the center, including the Lorenz system, the Shimizu-Morioka model, the homoclinic garden model, and the laser model. A multi-fractal, self-similar organization of heteroclinic and homoclinic bifurcations of saddle singularities is explored on a bi-parametric plane of those dynamical systems. Also a great detail is explored in the Shimizu-Morioka model as an example. The technique is also applied to a re exion symmetric dynamical system with a saddle-focus at the center (Chua's circuits). The layout of the homoclinic bifurcations near the primary one in such a system is studied theoretically, and a scalability ratio is proved. Another part of the dissertation explores the intrinsic mechanisms of escape in a reciprocally inhibitory FitzHugh-Nagumo type threecell network, using the phase-lag technique. The escape network can produce phase-locked states such as pace-makers, traveling-waves, and peristaltic patterns with recurrently phaselag varying.

Page generated in 0.0408 seconds