• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrashort Pulse Propagation in the Linear Regime

Wang, Jieyu 2009 December 1900 (has links)
First, we investigate the Bouguer-Lambert-Beer (BLB) law as applied to the transmission of ultrashort pulses through water in the linear absorption regime. We present a linear theory for propagation of ultrashort laser pulses, and related experimental results are in excellent agreement with this theory. Thus we conclude that recent claims of the BLB law violations are inconsistent with the experimental data obtained by our group. Second, we study the dynamics of ultrashort pulses in a Lorentz medium and in water via the saddle point method. It shows that the saddle point method is a more efficient and faster method than the direct integration method to study one-dimensional pulse propagation over macroscopic distances (that is, distance comparable to the wavelength) in a general dielectric medium. Comments are also made about the exponential attenuation of the generalized Sommerfeld and Brillouin precursors. By applying the saddle point method, we also determined that the pulse duration estimated by the group velocity dispersion (GVD) approximation is within 2% of the value computed with the actual refractive index for a propagation distance of 6 m in water.
2

Uniform asymptotic approximations of integrals

Khwaja, Sarah Farid January 2014 (has links)
In this thesis uniform asymptotic approximations of integrals are discussed. In order to derive these approximations, two well-known methods are used i.e., the saddle point method and the Bleistein method. To start with this, examples are given to demonstrate these two methods and a general idea of how to approach these techniques. The asymptotics of the hypergeometric functions with large parameters are discussed i.e., 2F1 (a + e1λ, b + e2λ c + e3λ ; z)where ej = 0,±1, j = 1, 2, 3 as |λ|→ ∞, which are valid in large regions of the complex z-plane, where a, b and c are fixed. The saddle point method is applied where the saddle point gives a dominant contributions to the integral representations of the hypergeometric functions and Bleistein’s method is adopted to obtain the uniform asymptotic approximations of some cases where the coalescence takes place between the critical points of the integrals. As a special case, the uniform asymptotic approximation of the hypergeometric function where the third parameter is large, is obtained. A new method to estimate the remainder term in the Bleistein method is proposed which is created to deal with new type of integrals in which the usual methods for the remainder estimates fail. Finally, using the asymptotic property of the hypergeometric function when the third parameter is large, the uniform asymptotic approximation of the monic Meixner Sobolev polynomials Sn(x) as n → ∞ , is obtained in terms of Airy functions. The asymptotic approximations for the location of the zeros of these polynomials are also discussed. As a limit case, a new asymptotic approximation for the large zeros of the classical Meixner polynomials is provided.
3

Asymptotic enumeration via singularity analysis

Lladser, Manuel Eugenio 15 October 2003 (has links)
No description available.
4

Analogue Hawking radiation as a logarithmic quantum catastrophe

Farrell, Liam January 2021 (has links)
Masters thesis of Liam Farrell, under the supervision of Dr. Duncan O'Dell. Successfully defended on August 26, 2021. / Caustics are regions created by the natural focusing of waves. Some examples include rainbows, spherical aberration, and sonic booms. The intensity of a caustic is singular in the classical ray theory, but can be smoothed out by taking into account the interference of waves. Caustics are generic in nature and are universally described by the mathematical theory known as catastrophe theory, which has successfully been applied to physically describe a wide variety of phenomena. Interestingly, caustics can exist in quantum mechanical systems in the form of phase singularities. Since phase is such a central concept in wave theory, this heralds the breakdown of the wave description of quantum mechanics and is in fact an example of a quantum catastrophe. Similarly to classical catastrophes, quantum catastrophes require some previously ignored property or degree of freedom to be taken into account in order to smooth the phase divergence. Different forms of spontaneous pair-production appear to suffer logarithmic phase singularities, specifically Hawking radiation from gravitational black holes. This is known as the trans-Planckian problem. We will investigate Hawking radiation formed in an analogue black hole consisting of a flowing ultra-cold Bose-Einstein condensate. By moving from an approximate hydrodynamical continuum description to a quantum mechanical discrete theory, the phase singularity is cured. We describe this process, and make connections to a new theory of logarithmic catastrophes. We show that our analogue Hawking radiation is mathematically described by a logarithmic Airy catastrophe, which further establishes the plausibility of pair-production being a quantum catastrophe / Thesis / Master of Science (MSc)
5

Approche analytique pour le mouvement brownien réfléchi dans des cônes / Analytic approach for reflected Brownian motion in cones

Franceschi, Sandro 08 December 2017 (has links)
Le mouvement Brownien réfléchi de manière oblique dans le quadrant, introduit par Harrison, Reiman, Varadhan et Williams dans les années 80, est un objet largement analysé dans la littérature probabiliste. Cette thèse, qui présente l’étude complète de la mesure invariante de ce processus dans tous les cônes du plan, a pour objectif plus global d’étendre au cadre continu une méthode analytique développée initialement pour les marches aléatoires dans le quart de plan par Fayolle, Iasnogorodski et Malyshev dans les années 70. Cette approche est basée sur des équations fonctionnelles, reliant des fonctions génératrices dans le cas discret et des transformées de Laplace dans le cas continu. Ces équations permettent de déterminer et de résoudre des problèmes frontière satisfaits par ces fonctions génératrices. Dans le cas récurrent, cela permet de calculer explicitement la mesure invariante du processus avec rebonds orthogonaux, dans le chapitre 2, et avec rebonds quelconques, dans le chapitre 3. Les transformées de Laplace des mesures invariantes sont prolongées analytiquement sur une surface de Riemann induite par le noyau de l’équation fonctionnelle. L’étude des singularités et l’application de méthodes du point col sur cette surface permettent de déterminer l’asymptotique complète de la mesure invariante selon toutes les directions dans le chapitre 4. / Obliquely reflected Brownian motion in the quadrant, introduced by Harrison, Reiman, Varadhan and Williams in the eighties, has been studied a lot in the probabilistic literature. This thesis, which presents the complete study of the invariant measure of this process in all the cones of the plan, has for overall aim to extend to the continuous framework an analytic method initially developped for random walks in the quarter plane by Fayolle, Iasnogorodski and Malyshev in the seventies. This approach is based on functional equations which link generating functions in the discrete case and Laplace transform in the continuous case. These equations allow to determine and to solve boundary value problems satisfied by these generating functions. In the recurrent case, it permits to compute explicitly the invariant measure of the process with orthogonal reflexions, in the chapter 2, and with any reflexions, in the chapter 3. The Laplace transform of the invariant measure is analytically extended to a Riemann surface induced by the kernel of the functional equation. The study of singularities and the use of saddle point methods on this surface allows to determine the full asymptotics of the invariant measure along every directions in the chapter 4.

Page generated in 0.0372 seconds