Spelling suggestions: "subject:"saginaw yay"" "subject:"saginaw aay""
1 |
Load reduction and invasive mussel effects on eutrophication dynamics in Saginaw Bay, Lake HuronCha, Yoon Kyung January 2011 (has links)
<p>Phosphorus load reduction and dreissenid invasion are the two most important factors that influence europhication dynamics in the Great Lakes. The 1978 amendments to the Great Lakes Water Quality Agreement (GLWQA) between the United States and Canada established target phosphorus loads for the lakes, leading to reductions in external phosphorus loading to the Great Lakes. With diminished phosphorus levels, further nutrient management was a minor concern until the proliferation of invasive dreissenid mussels. Dreissenid mussels were first documented in the Laurentian Great Lakes in the late 1980s. Zebra mussels (<italic>Dreissena polymorpha</italic>) spread quickly into shallow, hard-substrate areas; quagga mussels (<italic>Dreissena rostriformis bugensis</italic>) spread more slowly and are currently colonizing deep, offshore areas. These mussels have the potential to modify biogeochemical processes and food web structure, altering nutrient cycling and availability. Following the mussel invasion, cyanobacterial blooms and nuisance benthic algal growth have reappeared in many nearshore areas of the Great Lakes.</p><p>This dissertation characterizes long-term patterns of phosphorus loading and mussel populations for Saginaw Bay, and estimates the effects of load reductions and dreissenid invasion on several aspects of pelagic water quality, focusing on phosphorus flux and cycling in Saginaw Bay. Bayesian approaches were used to quantify the impacts of load reduction and mussel invasion, while at the same time addressing model parameter uncertainty and prediction uncertainty associated with long-term observational data. Annual total phosphorus load estimates suggest a decreasing trend until the late 1970s to early 1980s, reflecting the effectiveness of point source controls implemented pursuant to GLWQA. Despite the decrease, however, the annual loads have not likely met the 440 tonne yr-1 target established for Saginaw Bay. In 1990 zebra mussels were discovered in the bay and by 1992 they were widespread and peaked with densities of >30,000 m<super>-2</super>. Following the peak, mean densities dropped and modeling results predict that the density will reach equilibria at ~600 m<super>-2</super>. When mussels appeared, the proportion of tributary phosphorus retained in Saginaw Bay increased from ~0.5 to ~0.7, reducing phosphorus export to the main body of Lake Huron. The combined effects of increased phosphorus retention and decreased phosphorus loading have caused an ~60% decrease in phosphorus export from Saginaw Bay to Lake Huron. The analysis of long-term patterns of pelagic water quality highlights the sustained effects of mussel invasion on altering water quality parameters in Saginaw Bay; there was a consistent decrease in chlorophyll concentrations by ~46%, and total phosphorus concentrations by ~25%, and an increase in secchi depths by ~15% over ~20 year invasion of mussels. A comparison of chlorophyll-phospohrus relationship between pre- and post-invasion periods suggest the reduced chlorophyll yield for a given phosphorus concentration after the mussel invasion. Further, decreases in both total phosphorus and chlorophyll concentrations were found in the majority of 24 mussel-invaded US lakes in addition to Saginaw Bay, and modeling results predict less chlorophyll yields per unit phosphorus level that ranges from oligo- to mesotrophic conditions. All lines of evidence presented in the dissertation point to the important roles of load reductions and invasive mussels affecting eutrophication dynamics in lake ecosystems.</p> / Dissertation
|
2 |
The plan, design, and implementation of life-changing small groups at Saginaw Bay Church of ChristKott, Henry. January 2008 (has links)
Thesis (D. Min.)--Trinity Evangelical Divinity School, 2008. / Abstract. Description based on print version record. Includes bibliographical references (leaves 170-176).
|
3 |
Negative effects of sedimentation on lithophilic spawning fish embryos and methods to potentially mitigate these effectsAlexander J Gatch (8045354) 29 November 2019 (has links)
<p>Natural and constructed rocky
reef habitats constitute important areas for lithophilic spawning fishes and
their embryonic and larval offspring. Interstitial spaces created by the
structure of rocky reefs create micro-environments where incubating embryos and
juvenile fishes are potentially protected from predators. However, if
interstitial spaces are filled or blocked by sediment deposition or biofouling,
the reef structure may lose the protective benefits for embryonic and larval fish
survival. Lake whitefish (<i>Coregonus clupeaformis</i>) and walleye (<i>Sander vitreus</i>) are native Great Lake
lithophilic broadcast spawning fish that use rocky spawning habitats that are
vulnerable to degradation caused by deposition of suspended sediments. To
restore degraded rocky reef habitat, common practices include addition of
material to existing reef structures or construction of new reefs, but both of
these practices can be costly and time intensive. In this study, we measured the
effect of different types and amounts of sediment cover on hatching success of walleye
eggs and assessed if differences in female walleye (female length and egg size)
account for tolerance to sediment cover. Additionally, we explored an
alternative approach for reef restoration, custodial maintenance, in which we
created two novel devices to potentially clean rocky reef habitat. We carried
out two laboratory experiments in 2018 and 2019 to test the effect of sediment
cover on hatching success of walleye eggs (2018) and to test how female
identity and female length or egg size may interact with sediment cover to
influence hatching success (2019). We exposed walleye eggs to instantaneous
sediment cover (0 mm – 7mm) of either sand (course) or silt (fine) sediments
from fertilization until day 15 of incubation. Our results indicated that walleye
eggs were sensitive to silt cover (71% mortality- 2 mm cover silt) but not sand
(47% mortality- 7mm cover sand). While there was an indication that hatching
success was marginally related to female length and egg size, we concluded that
sediment cover seemed to have similar effects on eggs, regardless of female
length or egg size. The susceptibility of walleye eggs to mortality caused by
sediment cover underscores the need for non-degraded spawning habitat. Our two
cleaning devices used either propulsion or pressurized water jets to clean
sediments from the rocky structure as they were towed behind a small vessel
(i.e., did not require the use of SCUBA divers). We used devices to clean two
natural rocky reefs in Saginaw Bay, Lake Huron in 2018 and 2019. We measured
relative hardness before and after use of devices on cleaned and uncleaned
study plots to determine effectiveness of devices. In addition, we measured egg
deposition by fall (lake whitefish) and spring (walleye) lithophilic spawners
on study plots to determine potential differences in fish usage of cleaned and
uncleaned areas. We found that cleaning devices contributed to changes in
relative hardness among study plots. Egg deposition was also variable on study
plots but in general, egg deposition was consistently highest on treatment plots
cleaned by our device that used propulsion. The practicality of cleaning
devices was seemingly related to the magnitude of degradation of rocky reefs,
nevertheless, our results show that the use of these or similar devices may
potentially increase egg deposition by creating areas of higher-quality
habitat. While more testing is necessary to fully understand the potential of
our reef cleaning devices, this two-year study suggests that these devices may
be capable of restoring degraded rocky spawning habitat which could potentially
minimize the negative effects associated with sediment degradation on
lithophilic spawning fish.</p>
|
Page generated in 0.0336 seconds