• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact de la vapeur d’eau et des aérosols désertiques ‎sur le bilan radiatif et leurs contributions à ‎l’intensification de la dépression thermique en ‎Afrique de l’Ouest / Radiative impact of aerosols and water vapor and contribution to the ‎intensification of the Saharan Heat Low over West Africa‎.

Guebsi, Ridha 24 May 2017 (has links)
Ce travail vise à améliorer notre ‎compréhension de l'impact radiatif des ‎aérosols et de la vapeur d'eau sur la ‎dynamique de la dépression thermique ‎saharienne (Saharan heat low, SHL) en ‎utilisant une combinaison d'observations ‎spatiales (MODIS, OMI et CALIOP) ainsi ‎que le modèle de transfert radiatif ‎STREAMER. La variabilité saisonnière ‎moyenne de l’épaisseur optique des aérosols ‎‎(AOD) et du contenu intégré en vapeur d'eau ‎‎(IWVC) sur le Sahara, moyenné sur les 11 ‎dernières années, est bien corrélée avec ‎l'évolution saisonnière du SHL. Après ‎l'apparition de la SHL, l'IWVC augmente ‎progressivement au dessus du Sahara tandis ‎que l'AOD présente un maximum localisé en ‎août, associé à la présence de systèmes ‎convectifs profonds formant au-dessus des ‎monts Hoggar.‎Pour estimer l'impact radiatif saisonnier de la ‎vapeur d'eau et des aérosols désertiques, le ‎modèle de transfert STREAMER a été utilisé ‎pour calculer le budget radiatif mensuel net ‎de mai à septembre. Des profils verticaux ‎mensuels moyens de température et ‎d'humidité obtenus à partir des analyses du ‎Centre européen pour les prévisions ‎météorologiques à moyen terme (ECMWF) ‎et des profils de coefficients d'extinction ‎dérivés de CALIOP sont utilisés comme ‎paramètres d'entrée pour le calcul du ‎modèle.‎ Nos travaux montrent que le forçage des ‎aérosols dans le Sud-Ouest du massif de ‎Hoggar domine le budget net radiatif de ‎surface, tandis que la vapeur d'eau est le ‎joueur le plus fort en termes de forçage en ‎ondes longues LW. Le forçage en ondes ‎courtes SW et longues LW associé aux ‎aérosols et à la vapeur d'eau, ‎respectivement, contribue au réchauffement de ‎la basse troposphère sur le Sahara pendant ‎l'été (lorsque le SHL est au-dessus du ‎Sahara). A son tour, ce chauffage intensifie ‎la circulation cyclonique du SHL conduisant ‎ainsi à renforcer l’advection de la vapeur ‎d'eau vers le Sahara.‎Par conséquent, l'analyse des tendances ‎décennales de la vapeur d'eau dans les ‎tropiques et sous-tropiques est importante ‎pour accroître la connaissance de la ‎dynamique de la SHL, une caractéristique ‎essentielle de la mousson ouest-africaine.‎Par ailleurs et pour la première fois, nous ‎montrons l'impact de la variabilité ‎saisonnière de la mousson africaine associée ‎à la modulation de la latitude du front ‎intertropicale (FIT), du jet de basse couche ‎‎(LLJ), du vent meridional et zonal, de ‎l’intensité et la position de la dépression ‎thermique saharienne et du jet d’est Africain ‎‎(EAJ) sur le soulèvement de la poussière sur ‎les deux périodes juin 2006 et juin 2011, ‎correspondant respectivement aux ‎campagnes AMMA et FENNEC.‎ / This work aims at enhancing our ‎understanding of the radiative impact of ‎aerosols and water vapor on the dynamics ‎of the Saharan Heat Low (SHL) using a ‎combination of space-borne observations ‎‎(MODIS, OMI, CALIOP) and a radiative ‎transfer model (STREAMER). The mean ‎seasonal variability of aerosol optical depth ‎‎(AOD) and integrated water vapor content ‎‎(IWVC) over the Sahara, averaged over the ‎last 11 years, is found to be well correlated ‎with the seasonal evolution of the SHL. ‎After the onset of the SHL, the IWVC is ‎observed to increase steadily over the ‎Sahara while the AOD exhibits a localized ‎maximum during August associated with the ‎presence of deep convective systems ‎forming over the Hoggar Mountains.‎To estimate the seasonal radiative impact of ‎water vapor and desert aerosols, ‎STREAMER was used to calculate the net ‎monthly radiative budget from May to ‎September. Average monthly temperature ‎and humidity profiles obtained from the ‎European center for medium range weather ‎forecast (ECMWF) analyses and extinction ‎coefficient profiles derived from CALIOP ‎are used as input parameters for the model ‎calculation.‎Our work shows that the aerosols forcing in ‎the shortwave (SW) dominates the net ‎surface radiative budget, while water vapor ‎is the strongest player in terms of longwave ‎‎(LW) forcing. The SW and LW forcing ‎associated with aerosols and water vapor, ‎respectively, contribute to heating the lower ‎troposphere over the Sahara during the ‎summer (when the SHL is over the Sahara).‎ In turn, this heating intensifies the cyclonic ‎circulation of the SHL thereby leading to ‎enhanced advection of water vapor ‎towards the Sahara.‎Hence, analyzing the decadal trends of ‎water vapor in the Tropics and sub-Tropics ‎is important to increase knowledge of the ‎dynamics of the SHL, a pivotal feature of ‎the West African Monsoon system.‎For the first time we show the impact of the ‎variability of ‎the ‎African ‎monsoon ‎associated with the ‎modulation of the latitude of intertropical ‎discontinuity (ITD), the Saharan Heat Low ‎‎(SHL), the low level jet (LLJ) and African ‎Easterly Jet (AEJ) ‎on the uprising of dust ‎during the periods of June 2006 and June ‎‎2011, corresponding to the AMMA and ‎FENNEC field campaigns, respectively.‎
2

Variabilité intrasaisonnière de la mousson africaine : caractérisation et modélisation / Intraseasonal variability of the West african monsoon : characterization and modelling

Roehrig, Romain 19 November 2010 (has links)
La variabilité intrasaisonnière de la mousson d'Afrique de l'Ouest se caractérise par une alternance de phases sèches et humides, dont les impacts pe uvent être dramatiques sur les populations locales. Cette variabilité met en jeu un grand nombre d'échelles spatiales et temporelles, rendant difficile sa compréhension, sa modélisation et sa prévision. Cette thèse propose quelques éclairages sur ces différentes thématiques. La dépression thermique saharienne est un acteur majeur de la mousson africaine. La caractérisation de sa variabilité intrasaisonnière a permis de mettre en évidence, à l'échelle de 15 jours, l'existence d'interactions entre les latitudes moyennes et l'Afrique de l'Ouest. Lors de son passage au-dessus de l'Atlantique et la Méditerranée, un train d'ondes de Rossby module les ventilations de la dépression thermique, et donc sa structure. Les anomalies de circulation, de température et d'humidité, ainsi induites sur le Sahel, pourraient alors expliquer une partie des fluctuations intrasaisonnières de la convection, notamment celles qui naissent sur l'est du Sahel, et qui se propagent ensuite vers l'ouest. L'état moyen et la variabilité intrasaisonnière de la mousson africaine restent un défi pour les modèles de climat, même pour la dernière génération, qui a participé à l'exercice d'intercomparaison CMIP3. La variabilité à haute fréquence de la convection est un élément particulièrement difficile à modéliser. Toutefois, la meilleure prise en compte de facteurs inhibant le développement de la convection pourrait être une étape importante pour améliorer la modélisation de la mousson et la prévision de ses fluctuations intrasaisonnières / The intraseasonal variability of the West African Monsoon is associated with persistent dry and wet periods over the Sahel, whose consequences can be dramatic for local populations. Its understanding, modelling and forecast still pose a challenge to the scientific community, notably because it involves a large number of space and timescales. The present study elaborates a few answers to these issues. The Saharan heat low is one of the major actors of the African monsoon. The characterization of its intraseasonal variability revealed the existence of interaction between the tropics and the extratropics, at the 15-day timescale. As it propagates eastward above the Atlantic and the Mediterranean, a Rossby wave train modulates the heat low ventilations, and thus its structure. Anomalous circulation, as well as temperature and humidity anomalies, can be induced over the Sahel, and lead to intraseasonal modulations of convection, especially to those, which originate from the Eastern Sahel, and which, then, propagate westward. Current state-of-the-art (CMIP3) climate models still have significant problems and display a wide range of skill in simulating the West African monsoon mean state and intraseasonal variability. The high frequency variability is particularly difficult to capture. However, the account for processes, which inhibit convection development, may be expected to be an important step in the improvement of the monsoon modelling and the forecast of its intraseasonal fluctuations

Page generated in 0.0736 seconds