• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 64
  • 64
  • 64
  • 64
  • 64
  • 60
  • 11
  • 4
  • 2
  • 1
  • Tagged with
  • 158
  • 158
  • 83
  • 58
  • 32
  • 22
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Biological characteristics of spring and autumn herring populations in the Gulf of St. Lawrence and their interrelations.

Messieh, Shoukry N. January 1973 (has links)
No description available.
32

Genotoxicity in water and sediment extracts from the St. Lawrence river system, using the SOS chromotest

Langevin, Robert January 1991 (has links)
Surface water and sediments from the St. Lawrence River system (Quebec region) were analysed for genotoxicity using nonlinear SOS Chromotest parameters, as well as for their chemical concentrations of polycyclic aromatic hydrocarbons and heavy metals. Additionally, sediments chlorobenzenes, polychlorinated biphenyls, organochlorinated pesticides, ammonia and nitrites concentrations were determined. Organic contaminants were extracted dichloromethane. For surface water, fifteen extracts of filtered water and seven of particulates, and for sediments, one extract of pore water and three of particulates proved to be weakly genotoxic. All but one of the genotoxic responses observed in the surface water were obtained from samples taken from the highly industrial portion of the St. Lawrence River system, with the strongest responses observed in Lake St-Louis. Surface water genotoxicants partitioning favors the particulate fraction. Bottom particulates genotoxicity was one thousand fold weaker than suspended particulates. Additionally, whole sediments were extracted with a 10% dimethylsulfoxide-saline solution. Genotoxicity of hydrophilic contaminants was detected in all extracts. The observed distributions of genotoxicity values did not correlate with observed concentrations of demonstrated SOS inducers, mutagens and/or carcinogens, nor with the presence of other toxic chemicals.
33

Studies on a member of the pleuston, Anomalocera opalus n.s. (Crustacea, Copepoda) in the Gulf of St. Lawrence.

Pennell, William. January 1973 (has links)
No description available.
34

Environmental factors affecting the relative abundance of native and invasive freshwater amphipods in the St. Lawrence River

Palmer, Michelle Elaine January 2004 (has links)
Freshwater ecosystems worldwide are being altered by multiple stressors. One of the most important stressors is biological invasion---the introduction of exotic species, which can contribute to the loss of native species. The effects of an introduced species are correlated with its abundance and typically vary across ecosystems, suggesting that its impact on native species is mediated by its environment, i.e. the physical habitat and the recipient community. However, there are few studies that explore the effects of environment on the interactions between exotic and native species. My thesis examines the influence of physical habitat variables and community interactions on the relative abundance of exotic and native freshwater crustaceans in the St. Lawrence River. / The Eurasian amphipod Echinogammarus ischnus invaded the Great Lakes-St. Lawrence River system in the mid-1990s and has replaced the native North American Gammarus fasciatus as the dominant amphipod in littoral areas throughout Lake Erie and Lake Ontario.
35

Environmental factors affecting the relative abundance of native and invasive freshwater amphipods in the St. Lawrence River

Palmer, Michelle Elaine January 2004 (has links)
No description available.
36

Genotoxicity in water and sediment extracts from the St. Lawrence river system, using the SOS chromotest

Langevin, Robert January 1991 (has links)
No description available.
37

Studies on a member of the pleuston, Anomalocera opalus n.s. (Crustacea, Copepoda) in the Gulf of St. Lawrence.

Pennell, William. January 1973 (has links)
No description available.
38

Yellow perch consumption of invasive mussels in the St. Lawrence River

Harper, Kathryn M. January 2007 (has links)
No description available.
39

Influence of physico-chemical factors on the distribution and biomass of invasive mussels in the St. Lawrence River

Jones, Lisa A., 1976- January 2005 (has links)
Biological invasions threaten the stability and biodiversity of freshwater ecosystems worldwide. The impacts of an invading species often vary across systems, making their prediction difficult. When data from multiple invaded sites are available, statistical models can be developed to correlate an invader's distribution and abundance with local environmental variables; such models could then provide managers with useful tools to help prioritize efforts to control the invader. The introduction of the zebra mussel (Dreissena polymorpha) and quagga mussel (D. bugensis) to North America ranks among the most ecologically and economically disruptive aquatic invasions ever documented. While some attempts have been made to predict zebra mussel occurrence and abundance, none have been made for quagga mussels. Furthermore, few studies have been based on river systems, which possess the bulk of North American freshwater biodiversity. I related zebra and quagga mussel occurrence and biomass to physical habitat variables (calcium concentration, substrate size and depth) in the St. Lawrence River. I then developed predictive models of abundance for each species from combinations of these variables. Each variable explained a significant amount of variation in mussel biomass, but different combinations of variables were obtained for each species. Although these models do not account for all of the variation in abundance, they do provide a useful basis for predicting dreissenid distribution and abundance in other invaded river systems.
40

Yellow perch consumption of invasive mussels in the St. Lawrence River

Harper, Kathryn M. January 2007 (has links)
Biological invasions are a global phenomenon that can threaten native species and disrupt ecosystem processes. Exotic species also impact ecosystems in less conspicuous ways by provoking native species to alter their foraging behaviour. Subtle impacts such as diet shifts are frequent, and can have consequences for food web dynamics and the fitness of native predators. Diet shifts involving the consumption of exotic species require native predators to recognize, capture and handle novel prey. In this thesis, I document a diet shift in the St. Lawrence River involving a common native fish and Eurasian mussels that invaded the river in the early 1990s. I conducted diet analysis of yellow perch (Perca flavescens) at multiple sites in the upper St. Lawrence River and discovered that they consumed substantial quantities of zebra and quagga mussels (Dreissena spp.) in the Soulanges Canal, an artificial waterway west of Montreal. This was unexpected because perch lack adaptations for crushing molluscs. This foraging innovation was not observed at the same site in the early 1990s or at other sites at any time. Mussel shells were weaker at this site, probably because of exposure to calcium-poor water. This suggests that water chemistry mediates yellow perch predation on mussels. This study provides an example of diet shifts involving exotic prey and illustrates the influence of abiotic factors on species interactions.

Page generated in 0.0423 seconds