Spelling suggestions: "subject:"saliência visual"" "subject:"saliências visual""
1 |
Modelando a atenção seletiva e a saliência visual através de redes complexas / Modeling the selective attention and visual saliency using complex networksRigo, Gustavo Vrech 22 July 2010 (has links)
A atenção seletiva é uma característica central do sistema visual humano, uma vez que todo o cérebro é otimizado de modo a perceber as informações ao seu redor da forma mais rápida possível. Porém, em geral os trabalhos nesta área apenas verificam quais são as regiões de maior freqüência da atenção seletiva, dando pouca importância para a sua mecânica. A presente dissertação propõe um modelo que represente a atenção seletiva como uma rede complexa, combinando naturalmente as áreas de redes complexas, cadeias de Markov, análise de imagens, atenção seletiva e saliência visual num modelo biologicamente plausível para simular a atenção seletiva. O modelo propõe que pontos importantes da imagem, pontos salientes, sejam caracterizados como vértices da rede complexa, e que as arestas sejam distribuídas de acordo com a probabilidade da mudança de atenção entre dois vértices. Desta forma, a mecânica da atenção seletiva seria simulada pela mecânica da rede complexa correspondente. Foram estudadas imagens em níveis de cinza, sendo estas correspondentes à cena observada. A probabilidade de mudança entre duas regiões, as arestas da rede, foram definidas através de diversos métodos de composição da saliência visual, e as redes resultantes comparadas com redes complexas provenientes de um experimento protótipo realizado. A partir deste experimento foram propostos refinamentos no modelo original, tornando assim a mecânica do modelo o mais próximo possível da mecânica humana da atenção seletiva. / Selective attention is a central feature of the human visual system, since the entire brain is optimized in order to understand the information around as quickly as possible. In general works in this area only search which regions has a higher frequency of selective attention, with little consideration for their mechanics. This study proposes a model that represents the selective attention as a complex network, combining naturally areas of complex networks, Markov chains, image analysis, selective attention and visual salience in a biologically plausible model to simulate the selective attention. The model proposes that the important points of the image, salient points, are identified as vertices of the complex network, and the edges are distributed according to the probability of shift of attention between two vertices. Thus, the mechanics of selective attention would be simulated by the mechanics of correspondent complex network. We studied images in gray levels, which are corresponding to the scene observed. The probability of switching between two regions, the edges of the network were identified through various methods of visual saliency composition, and the resulting networks compared with complex networks from a prototype experiment performed. From this experiment were proposed refinements to the original model, thereby making the mechanical design as close as possible to the mechanics of human selective attention.
|
2 |
Modelando a atenção seletiva e a saliência visual através de redes complexas / Modeling the selective attention and visual saliency using complex networksGustavo Vrech Rigo 22 July 2010 (has links)
A atenção seletiva é uma característica central do sistema visual humano, uma vez que todo o cérebro é otimizado de modo a perceber as informações ao seu redor da forma mais rápida possível. Porém, em geral os trabalhos nesta área apenas verificam quais são as regiões de maior freqüência da atenção seletiva, dando pouca importância para a sua mecânica. A presente dissertação propõe um modelo que represente a atenção seletiva como uma rede complexa, combinando naturalmente as áreas de redes complexas, cadeias de Markov, análise de imagens, atenção seletiva e saliência visual num modelo biologicamente plausível para simular a atenção seletiva. O modelo propõe que pontos importantes da imagem, pontos salientes, sejam caracterizados como vértices da rede complexa, e que as arestas sejam distribuídas de acordo com a probabilidade da mudança de atenção entre dois vértices. Desta forma, a mecânica da atenção seletiva seria simulada pela mecânica da rede complexa correspondente. Foram estudadas imagens em níveis de cinza, sendo estas correspondentes à cena observada. A probabilidade de mudança entre duas regiões, as arestas da rede, foram definidas através de diversos métodos de composição da saliência visual, e as redes resultantes comparadas com redes complexas provenientes de um experimento protótipo realizado. A partir deste experimento foram propostos refinamentos no modelo original, tornando assim a mecânica do modelo o mais próximo possível da mecânica humana da atenção seletiva. / Selective attention is a central feature of the human visual system, since the entire brain is optimized in order to understand the information around as quickly as possible. In general works in this area only search which regions has a higher frequency of selective attention, with little consideration for their mechanics. This study proposes a model that represents the selective attention as a complex network, combining naturally areas of complex networks, Markov chains, image analysis, selective attention and visual salience in a biologically plausible model to simulate the selective attention. The model proposes that the important points of the image, salient points, are identified as vertices of the complex network, and the edges are distributed according to the probability of shift of attention between two vertices. Thus, the mechanics of selective attention would be simulated by the mechanics of correspondent complex network. We studied images in gray levels, which are corresponding to the scene observed. The probability of switching between two regions, the edges of the network were identified through various methods of visual saliency composition, and the resulting networks compared with complex networks from a prototype experiment performed. From this experiment were proposed refinements to the original model, thereby making the mechanical design as close as possible to the mechanics of human selective attention.
|
Page generated in 0.0358 seconds