• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 30
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 144
  • 144
  • 30
  • 29
  • 29
  • 20
  • 20
  • 20
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The action of salicylic acid upon the metallic acids ...

Müller, John Hughes. January 1910 (has links)
Thesis (PH. D.)--University of Pennsylvania.
2

The action of salicylic acid upon the metallic acids ...

Müller, John Hughes. January 1910 (has links)
Thesis (PH. D.)--University of Pennsylvania.
3

Heterogenisation of manganese salen complexes for epoxidation

McCue, Alan J. January 2012 (has links)
Silica functionalised with PAMAM dendrimer chains has been investigated as a support for anchoring chiral salen complexes in both an axial and covalent fashion. It was found that using a high dendrimer chain density resulted in very low enantioselectivity in the epoxidation of styrene, 1-methyl-1-cyclohexene and α-methylstyrene. Through a thorough series of tests the poor performance was attributed to both interactions with the surface and with neighbouring dendrimer chains. It was found that the system could be improved by decreasing the dendrimer chain density and pacifying the surface by capping the remaining surface hydroxyl groups on the silica. This resulted in the epoxidation of α-methylstyrene with a considerably improved enantioselectivity. Dendritically functionalised silica and silica coated magnetic nanoparticles were also investigated as supports for the immobilisation of an achiral salen complex. High epoxide selectivity was achieved with α-pinene and 1-methyl-1-cyclohexene, while more moderate selectivity was achieved with cyclohexene and limonene as substrates. The heterogeneous catalysts could generally be used 3 times with no apparent loss in activity or selectivity. Both enantiomers of α-pinene and limonene were used to investigate immobilised chiral salen complexes. Results indicate that the diastereomeric excess produced is independent of the configuration or presence of stereogenic centres in the complex. Instead the stereoselectivity appears to be controlled by the nature of the substrate alone. These results call into question the use of such substrates for the investigation of immobilised chiral salen complexes.
4

Effect of scale during electrochemical degradation of naphthalene and salicylic acid

Lee, Dong Geun. January 2008 (has links)
Thesis (M.S.)--Michigan State University. Civil Engineering, 2008. / Title from PDF t.p. (Proquest, viewed on Aug. 11, 2009) Includes bibliographical references (p. 78-82).
5

An analysis of dendritic cooperativity in protein hydrolysis

O'Dell, Jacob Webb. January 2005 (has links) (PDF)
Thesis (M.S.)--Montana State University--Bozeman, 2005. / Typescript. Chairperson, Graduate Committee: Mary J. Cloninger. Includes bibliographical references (leaves 75-77).
6

Systemic acquired resistance to Phytophthora infestans in potatoes and tomatoes

Darby, Judith January 1996 (has links)
No description available.
7

Salicylic acid biosynthesis in higher plants

Macaulay, Keith Malcolm January 2011 (has links)
No description available.
8

Stability studies on some substituted aminobenzoic acids

Rotich, Moses Kipngeno January 2003 (has links)
he thermal behaviour in the solid state of various substituted aminobenzoic acids (3-aminobenzoic acid (3-ABA), 4-aminobenzoic acid (4-ABA), 3-aminosalicylic acid (3-ASA), 4-aminosalicylic acid (4-ASA), and 5-aminosalicylic acid (5-ASA), as well as the "parent" benzoic acid (BA) and salicylic acid (SA) as reference substances, and possible decomposition products: 2-aminophenol (2-AP), 3-aminophenol (3-AP) and 4-aminophenol (4-AP), has been examined. The various sets of isomers studied showed considerable and interesting differences. Most sublimed well before melting, generally with an increasing rate of mass loss beyond their very different melting points. The existence of ranges of isomers allows for the comparison of their behaviour, including such aspects as melting, vaporisation, and the influence of products on the course of decomposition of initially-solid reactants. The differences in behaviour of 4-ASA and 5-ASA were the most remarkable, with 5-ASA being far more stable and apparently not decarboxylating readily, while 4-ASA sublimed at temperatures below the melting point, becoming less stable and decarboxylating in the liquid form. There is also a marked difference in the thermal behaviour of 3-ASA, as compared with 4-ASA and 5-ASA. It decarboxylated at higher temperatures (260°C) than 4-ASA (150°C). The addition of the possible decomposition products to these compounds showed faster decomposition for 4-ASA mixed with 3-AP. The sodium salts of 3-ASA and 4-ASA decarboxylate while that of 5-ASA did not. Binary mixtures of the substances listed above with beta-cyclodextrin (BCD), hydroxypropylbeta-cyclodextrin (HPBCD) and gamma-cyclodextrin (GCD) were prepared (by simple physical mixing or by kneading with a solvent) and were then examined for possible interactions using DSC, TG-FTIR, HSM, XRD and NMR. Generally, kneaded mixtures showed greater changes in thermal behaviour from that of the individual components than the physical mixtures, but changes in the physical mixtures were also significant. Comparison of the effects of the different CDs on the thermal behaviour of individual ASA isomers showed that HPBCD has the greatest interaction with 3-ASA and 5-ASA, followed by GCD, while BCD generally showed the least interactions. For 4-ASA, the effect of GCD is more marked than for 3-ASA and 5-ASA. GCD has the largest molecular cavity.
9

Investigating the role of Pseudomonas syringae pv. tomato biofilm formation during successful infections and the effect of PAMP-Triggered Immunity on biofilm formation in Arabidopsis

Xiao, Wantao January 2021 (has links)
Plants rely on innate immunity to perceive and respond to pathogenic microbes. Pathogenic microbes suppress and evade plant immune responses to obtain nutrients and multiply resulting in plant diseases and death. One battleground for the arms race between plants and microbial invaders is located in the leaf intercellular space, specifically between Pseudomonas bacteria and Arabidopsis. This thesis seeks to understand the virulence mechanisms that allow Pseudomonas bacteria to grow within the leaves of Arabidopsis and how the plant immune response reduces pathogen growth and reproduction. Some plant pathogens produce specific extracellular polysaccharides to potentially enhance pathogenicity during infection of plants. The objective of this thesis is to understand the importance of biofilms for Pseudomonas success and determine if Arabidopsis suppresses biofilm formation as part of the plant immune response. It was hypothesized that biofilm formation contributes to Pseudomonas success in planta and Arabidopsis suppresses biofilm formation during PAMP-Triggered Immunity (PTI) to reduce bacterial growth. Wild-type plants and defense mutants were infiltrated with flg22 or mock (water) treatments to induce or mock-induce PTI in plants, followed by observing GFP-expressing Pseudomonas via florescence microscopy to determine if biofilm-like aggregate formation was occurring. In vivo studies in this thesis indicate that biofilm-like aggregate formation contributes to bacterial success during Arabidopsis infection. Additionally, the phytohormone, salicylic acid (SA), accumulates in leaf intercellular spaces of resistant plants during PTI that suppresses biofilm formation, suggesting that SA acts as an anti-microbial and anti-biofilm agent that contributes to the suppression of pathogen growth during plant defense. / Thesis / Master of Science (MSc)
10

Tobacco Methyl Salicylate Esterase Mediates Nonhost Resistance

Chigurupati, Pavan, Haq, Imdadul, Kumar, Dhirendra 01 October 2016 (has links)
Nonhost resistance is a type of broad-spectrum resistance exhibited by a given plant species to most strains of a pathogen which are generally pathogenic to other plant species. In this study, we have examined the role of tobacco SABP2 (Salicylic acid-Binding Protein 2) in nonhost resistance. SABP2, a methyl salicylate esterase is a critical component of SA-signaling pathway in tobacco plants. The transgenic tobacco SABP2-silenced lines treated with tetraFA, a known inhibitor of esterase activity of SABP2 exhibited enhanced susceptibility to nonhost pathogen, Pseudomonas syringae pv. phaseolicola compared to the control plants. The increased accumulation of SABP2 transcripts upon Psp infection supports the involvement of SABP2 in nonhost resistance. The tetra-FA treated plants also showed delayed expression of pathogenesis related-1 gene upon Psp inoculations. The expression of nonhost marker genes CDM1 and HIN1 was also monitored in tobacco plants infected with host-pathogen P.s. pv. tabaci and P.s. pv. phaseolicola. Overall, results presented in this manuscript suggest that SABP2 has a role in nonhost resistance in tobacco plants.

Page generated in 0.0611 seconds