• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 15
  • 12
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MEASUREMENT OF SALT DISPERSION IN UNSATURATED SAND USING A PULSED ELECTRONIC PSYCHROMETER

Kitchen, Joseph Henry, 1934- January 1971 (has links)
No description available.
2

Sodium, calcium, and magnesium changes in soils upon application of saline-sodic waters

Alfatesh, Ibrahim Yahya, January 1986 (has links) (PDF)
Thesis (M.S. - Soil and Water Science)--University of Arizona, 1986. / Bibliography: leaves 82-88.
3

Alfalfa water-production functions under conditions of deficit irrigation with saline water

Pennington, Karrie Sellers, January 1986 (has links) (PDF)
Thesis (Ph. D. - Soil and Water Science)--University of Arizona, 1986. / Bibliography: leaves 100-104.
4

Subsurface irrigation with saline water : its effect on the hydraulic conductivity of the soil, and monitoring the salinity using time domain reflectometry

Bonnell, Robert B. January 1993 (has links)
No description available.
5

The effects of saline irrigation water on the growth and development of bell pepper (Capsicum annuum L.) grown using a plasticulture system

Morales-Garcia, Dagobiet, January 1900 (has links)
Written for the Dept. of Plant Science. Title from title page of PDF (viewed 2009/06/10). Includes bibliographical references.
6

Turfgrass Responses and Rootzone Media Characteristics as Affected by Salinity

Wang, Sheng January 2011 (has links)
Utilization of salt-tolerant species or cultivars is one the most effective methods to address salinity problems in turfgrass management. The relative salt tolerance in 26 commercial creeping bentgrass (Agrostis stolonifera) cultivars during germination was studied. Final germination rate (FGR) and daily germination rate (DGR) decreased as salinity levels increased; however, DGR was more sensitive to salinity stress. Substantial differences in salt tolerance were observed in bentgrass cultivars, with 'Declaration', 'Seaside II', 'T-1 ', and 'Bengal' being the most salt-tolerant (averaged predicted salinity level causing 50% reduction of DGR [PSLD] = 8.2 g L -1 NaCl) and 'Tyee', 'Kingpin'. and 'SRI 150' being the most salt-sensitive (averaged PLSD = 6.5 g L -1 NaCl). Relative salinity tolerance in four populations of prairie junegrass (Koeleriu macrantha) collected from Colorado, Minnesota, Nebraska, and North Dakota and two improved turf-type cultivars from Europe ('Barleria' and 'Barkoel') was determined and compared to Kentucky bluegrass (Poa pratensis), perennial ryegrass (Lolium perenne), sheep fescue (Festuca ovina), hard fescue (F. brevipila), and tall fescue (F. arundinacea). All populations of prairie junegrass showed similar salt tolerance with an average of PSLF and PSLD being 7.1 and 5.3 g L -1 NaCl, respectively, comparable to Kentucky bluegrass and hard and sheep fescue but lower than tall fescue and perennial rye grass. In junegrasses, larger variations were observed in visual quality (VQ) than in electrolyte leakage (EL) and dry weight (OW) at vegetative growth stage. 'Barleria' junegrass showed the highest VQ, following two salt-tolerant grasses, tall fescue and sheep fescue. Junegrass - Nebraska population was the least salt-tolerant within the species, but still exhibited similar or higher tolerance than Kentucky bluegrass and perennial ryegrass cv. Arctic Green. Overall, junegrass was more salt sensitive during germination but more tolerant to salinity when mature.
7

RESPONSE OF BARLEY GENOTYPES TO NON-SALINE AND SALINE ENVIRONMENTS.

ELMIGRI, MOHAMED RHUMA. January 1982 (has links)
A 2-year study (1976-1977) was conducted at the Safford Experiment Station, Safford, Arizona to investigate the response of barley (Hordeum vulgare L.) genotypes to both non-saline and saline environments. The soil types was a Grabe Clay Loam. One environment had received only river irrigation water for the previous 10 years and throughout the experiment (non-saline environment) and the other environment had been irrigated with only well water for the previous 10 years and throughout the experiment (saline environment). Fifteen barley genotypes were grown in each environment each year. The following data were recorded for each genotype each year: (1) plant height, (2) lodging, (3) number of heads per hill, (4) number of seeds per head, (5) seed weight, (6) grain yield, (7) straw yield, (8) grain-to-straw ratio, (9) days from planting to flowering, and (10) days from flowering to maturity. The exchange capacity, soluble ions, and ESP of the soil irrigated with well water were all much higher than the exchange capacity, soluble ions, and ESP of the soil irrigated with river water. The soluble salts, calcium, magnesium, sodium, chloride, sulfate, bicarbonate, and sodium adsorption ratio were all much higher in well irrigation water than were the same chemical properties in river irrigation water. The foregoing soil and water chemical properties indicate that the non-saline environment should be much more conducive to optimum plant growth than the saline environment. Most of the barley genotypes germinated more uniformally, grew better, and produced more forage and grain in the non-saline environment than they did in the saline environment. It required a longer period for barley to reach maturity in the saline environment than it did in the non-saline environment. When the data from the two years were combined, there were positive correlations between grain yield and plant height, number of heads per unit area, and straw yield in both non-saline and saline environments. Since there were significant differences between barley genotypes in a number of growth and yield characteristics in both environments, it should be possible to develop improved barley cultivars for both non-saline and saline environments using plant breeding techniques.
8

Response of grapes to saline irrigation water

Arbabzadeh-Jolfaee, Amir Farhad. January 1981 (has links)
Field and greenhouse experiments to determine the response of grapes to saline irrigation water were conducted. The goal of this research were: (1) to study the effect of salinity on grape and wine quantity and quality and (2) to evaluate the degree of salt tolerance of some of the grape rootstocks. For the greenhouse study, seven grape rootstocks were grown in the soil columns irrigated with three levels of salinity, EC of 0.45, 2.5, and 5 mmhos/cm. The later two waters were prepared by adding MgSO₄ and CaC1₂ salts to tap water with EC of 0.45 mmhos/cm. Shoot growth, pruning weight, leaf area, and trunk diameter were significantly reduced by salinity. Reduction in shoot growth and pruning weight were more pronounced than leaf area and trunk diameter. Maximum ECₑ values (1007 reduction in growth) varied from 8.81 mmhos/cm for 41B rootstock to 16.43 mmhos/cm for Ramsey rootstock. Maximum ECₑ for Barbera (Vitis vinifera) was 11.04 mmhos/cm. Based on percent reduction in growth, the relative tolerance of grapes could be arranged as follows: Ramsey > 5BB > SO4 > 1613 > Barbera > 99R > 41B. The field study included two sources of water and six grape rootstocks which were grafted to Barbera. Two sources of irrigation water were city and well water with EC of 0.42 and 2.6 mmhos/cm, respectively. The response of grapes to salinity was evaluated by fruit yield and pruning weight. Well water application significantly reduced fruit yield and pruning weight. The average fruit yield and pruning weight of Barbera grapes with all the rootstocks decreased by 49.5 7e and 26.7 7e with the well water compared to the city water, respectively. Must and wine analysis indicated that salt treated grape had higher total acidity and lower pH. Alcohol of the wines was not affected uniformly by treatment. Except for 99R rootstocks, the color of the wines were darker in city water than well water. Quality of wine from 3309 rootstock was lowered considerably by well water. With well water, only Barbera wine from 5BB rootstock appeared to be commercially acceptable. The six rootstocks differed from each other in their ability to growth in saline condition. Barbera grape grafted on 5BB and Ramsey rootstocks showed higher tolerance to salinity than Barbera on 99R, 3309, Harmony, and 41B rootstocks.
9

Alfalfa water-production functions under conditions of deficit irrigation with saline water

Pennington, Karrie Sellers,1949- January 1986 (has links)
This experiment was designed to determine the shape of the yield response function relating crop yield to total amount of saline irrigation water applied. Such a function contains a built-in leaching fraction that is the inevitable consequence of the inability of the plant to extract 100 % of the water from a saline soil. In order to define the production function and to determine the leaching fractions, alfalfa (Medicago sativa L. cv. 'Mesa Sirsa') was planted in soil columns in a greenhouse. Two experiments were run sequentially. These were irrigated with water of differing salinities. The first with an EC of 4 dS/m (1.4 bars) and the second with an EC of 8 dS/m (2.9 bars). Both solutions were prepared by adding equivalent amounts of sodium chloride and calcium chloride to distilled water. The treatment variables were amounts of irrigation water applied. The amounts in both experiments were 110%, 100%, 75%, 50% and 25% of the measured evapotranspiration (ET). Four crop harvests were made in each experiment. At the end of experiment 1, (approximately 120 days), one column from each treatment was destructively sampled for soil salinity and water content measurements. The remaining columns were similarly sampled at the end of experiment 2 (approximately 120 days). The crop-saline water production functions for both experiments were linear. Leaching fractions in experiment 1 were 9, 9, 6, 5 and 5% for treatments 1-5 respectively. Experiment 2 leaching fractions for treatments 1-5 respectively were 23, 25, 18, 15 and 17%. The lowest rootzone soil water osmotic potentials achieved by the end of experiment 1 for treatments 1-5 were -19, -20, -18, -26 and -24 bars. Corresponding treatment values achieved by the end of experiment 2 were -18, -22, -28, -31 and -45 bars.
10

Assessment of LEACHM-C model for semi-arid saline irrigation

Hagi-Bishow, Mohamed. January 1998 (has links)
Arid and semi-arid countries are facing the exhaustion of their water resources and are being forced to use saline water (brackish groundwater and drainage water) for irrigated agriculture. The result is often disastrous as extensive productive regions become salinized. Nevertheless, there is potential to expand irrigated agriculture through the increasing use of saline waters for irrigation. / This study presents an analysis of the performance of a transient state, model for numerical simulation of water and solute transport, known as LEACHM-C. It is assessed for areas where saline water may be an option for crop production. The model estimates the salt and water balance of a soil profile given certain irrigation and crop rotation strategies. / First, the predictive capability of the model was successfully tested using one year of data from a field experiment in a dry region of India. / Second, potential usefulness of the LEACHM-C model as a tool in the planning of reclamation activities was examined for a semi-arid basin in Syria. (Abstract shortened by UMI.)

Page generated in 0.1082 seconds