• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparison of invasive and non-invasive techniques for emasuring fiddler crab density in a salt marsh by Charles R. Hubbard.

Hubbard, Charles Robert. January 2008 (has links) (PDF)
Thesis (M.S.)--Georgia Southern University, 2008. / "A thesis submitted to the Graduate Faculty of Georgia Southern University in partial fulfillment of the requirements for the degree Master of Science." Directed by Sophie B. George. ETD. INDEX WORDS: Fiddler crabs, Population density, Salt marsh, Survey techniques Includes bibliographical references (p. 28-30) and appendices.
2

Salt marsh bird community responses to open marsh water management

Pepper, Margaret A. January 2008 (has links)
Thesis (M.S.)--University of Delaware, 2008. / Principal faculty advisor: W. G. Shriver, Dept. of Entomology & Wildlife Ecology. Includes bibliographical references.
3

Habitat ecology of intertidal nekton in southern New Jersey salt marshes tidal influences in natural and restored marshes.

Kimball, Matthew Eric. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Ecology and Evolution." Includes bibliographical references (p. 127-138).
4

The ichthyofauna associated with Taylor's salt marsh, Kariega estuary (Eastern Cape), South Africa /

Booth, Tara Loren. January 2007 (has links)
Thesis (M.Sc. (Zoology & Entomology)) - Rhodes University, 2009.
5

Comparison of nekton utilization of smooth cordgrass (Spartina alterniflora) marsh based on marsh size and degree of isolation from like habitat : do size and site location matter? /

Meyer, David L. January 2006 (has links) (PDF)
Thesis (Ph.D.)--University of North Carolina at Wilmington, 2006. / Includes bibliographical references (leaves: 198-208)
6

Tidal exchanges of carbon, nitrogen and phosphorus between a Sarcocornia salt-marsh and the Kariega estuary, and the role of salt-marsh brachyura in this transfer

Taylor, David Ian January 1988 (has links)
Tidal exchanges of organic carbon, nitrogen and phosphorus between a south temperate Sarcocornia marsh and its associated estuary are examined. Subterranean water flow was small, and the hydraulic exchange between the two systems largely surficial. The dominant tidal signal was semi-diurnal, and the extent of inundation of the marsh varied considerably as a consequence of interactions of semi-lunar tidal cycles with changes in daily mean sea level. Annual net fluxes of organic carbon were directed from the marsh to the estuary, but amounted to less than 2% of marsh aerial net primary productivity. This indicates the incompatibility of E.P. Odum's outwelling hypothesis to this marsh-estuarine system. The direction of net flux of organic carbon switched on a time-scale of days. These directions were largely correlated with mesoscale oceanic events, which materially altered the extent of marsh inundation, and which provided evidence of the mutual exclusivity of outwelling of DOC from the marsh and oceanic upwelling. Laboratory mesocosm experiments using intact marsh blocks of sediment from the marsh were conducted to identify the proximate processes and interactions at the marsh-water interface responsible for the variability of marsh-estuarine exchanges. Patterns of fluxes of organic carbon, total nitrogen and phosphorus were markedly different in the structurally contrasted tidal creek and Sarcocornia Zone regions of the marsh. Both regions exported these components, but the fluxes of organic carbon and total phosphorus were significantly larger from the tidal creek than from the Sarcocornia zone, and the opposite applied to nitrogen. The presence of brachyuran crabs . the most numerous macrofauna on the marsh enhanced the flux of carbon, nitrogen and phosphorus from the marsh biocoenosis, largely as a result of the effect of their bioturbation. Evidence is examined which suggests that differential mobilization of nutrients in the two zones by crabs is responsible for biogeochemical coupling of these two regions , which may account for the elevated productivity of salt- marsh systems
7

Effect of predator diet on foraging behavior of panopeus herbstII in response to predator urine cues

Connolly, Lauren E. 08 June 2015 (has links)
The ability of prey to detect and respond appropriately to predator risk is important to overall prey fitness. Many aquatic organisms assess risk through the use of chemical cues that can change with predator diet. Two variable characteristics of diet are: 1. prey type and 2. prey mass. To assess the effect of these two characteristics on the assessment of risk by the mud crab Panopeus herbstii, I exposed mud crabs to the urine of the blue crab Callinectes sapidus fed one of 5 diet treatments: 10g of oyster shell free wet mass, 5g of oyster shell free wet mass, 10g crushed mud crabs, 5g crushed mud crabs, and a mix of 5g of oyster shell free wet mass and 5g crushed mud crab. Effects on P. herbstii foraging were tested in a previously developed bioassay by measuring shrimp consumption over a 4 hour period. I hypothesized that P. herbstii would have a larger magnitude response to urine from C. sapidus fed a diet of crushed mud crabs than to urine from C. sapidus fed a diet of oysters. I further hypothesized that P. herbstii would have a larger magnitude response to urine from C. sapidus fed a high mass diet relative to a lower mass diet. Contrary to expectations there was no observed effect of urine on P. herbstii foraging in any of the treatments. Results suggest that bioassay protocol may be unreliable suggesting further replication to determine the difference between this study and previous results. Future studies examining how P. herbstii varies with urine concentration will aid in understanding the ecological scale of this predator cue system. Determining the role of other potential cue sources will improve the predictive abilities of these studies.
8

Sensory landscape impacts on odor-mediated predator-prey interactions at multiple spatial scales in salt marsh communities

Wilson, Miranda L. 29 June 2011 (has links)
This collection of research examines how changes in the sensory landscape, mediated by both odor and hydrodynamic properties, impact odor-mediated predator-prey interactions in salt marsh communities. I approached this research using an interdisciplinary framework that combined field and laboratory experimentation to address issues of scale and make connections between predator behavior and patterns of predation in the field. I explored a variety of interactions mediated by changes in the sensory landscape including; indirect effects of biotic structure on associated prey, predator responses to patches of prey with differing density and distribution, and dynamic interactions between predators and prey distributions. I found that biotic structure (oyster reefs [Crassostrea virginica]) has negative indirect effects on associated hard clam prey (Mercenaria mercenaria) through the addition of oyster reef odor cues that attract predators (blue crabs [Callinectes sapidus] and knobbed whelks [Busycon carica])and increase foraging success near the structural matrix. Variation in the structure of patch-scale prey odor plumes created by multiple prey results in predator-specific patterns of predation as a function of patch density and distribution which are mediated by differences in predator sensory ability. There is a potential negative feedback loop between blue crab predators and hard clam prey distributions; clam patches assume random within-patch distributions after exposure to blue crab predators, making the detection of patches by future blue crab predators more difficult. Sensory landscapes are also mediated by water flow, which transports prey odor plumes downstream to predators. Characterization of water flow in small-scale estuary systems indicates that values of turbulent flow parameters are highly context specific and depend on both tidal type (spring, neap, normal) and site. Wind and tidal range seem to be good predictors for wave components and turbulent components of fluctuating flow parameters, respectively, although the strength of their predictive ability is dependent on time scale. Modifications of the sensory landscape through changes in structurally-induced turbulence, mixing of individual plumes from multiple prey, and bulk velocity and turbulence characteristics need to be considered when formulating predictions as to the impact of predators on naturally occurring prey populations in the field.
9

The ichthyofauna associated with Taylor's salt marsh, Kariega estuary (Eastern Cape), South Africa

Booth, Tara Loren January 2009 (has links)
The spatial and temporal patterns in the ichthyofaunal community composition and structure in Taylor’s salt marsh and adjacent eelgrass beds (Zostera capensis) in the Kariega Estuary, was investigated every two months between May 2006 and March 2007. Total ichthyofaunal abundances and biomass in the salt marsh ranged between 0.55 and 21.7 ind.10m-2 and between 0.03 and 1.9 g.wwt.10m⁻², respectively. There were no significant spatial patterns in the values evident (P > 0.05 in all cases) although seasonal trends were marked, with highest values consistently recorded during the warmer summer months. Investigations into the community structure showed that the ichthyofaunal community within salt marsh was composed almost exclusively of juveniles of estuarine dependant (category II) species, mainly juvenile Mugilidae (<20mm SL) that comprised up to 83% of all fish sampled. Hierarchical cluster analysis and multidimensional scaling did not identify any distinct spatial patterns in the ichthyofaunal community within the salt marsh. The absence of any spatial patterns in the community structure could be related to the absence of any significant spatial patterns in the physico-chemical (temperature, salinity and dissolved oxygen concentrations) and biological (water column and microphytobenthic algal concentrations) variables within the salt marsh (P > 0.05 in all cases). Temporal shifts in the ichthyofaunal community structure within the salt marsh were, however, evident largely reflecting the breeding cycles of individual species within the sub-region. Within the adjacent eelgrass beds, total ichthyofaunal abundances and biomass ranged between 8.4 and 49.4 ind.10m⁻² and between 2.9 and 94.5 g.wwt.10m⁻², respectively. Once again there were no distinct spatial patterns in the abundance and biomass values evident although seasonal patterns were marked. In contrast to the salt marsh, within the in the eelgrass community, there were a large number of adult individuals recorded. Again category II species, the estuarine dependent species, were numerically and gravimetrically dominant. The dominance of category II species reflects the marine dominance of Kariega Estuary. The remaining estuarine utilisation categories did not contribute significantly to abundance or standing stock totals. Hierarchical cluster analysis showed that the salt marsh and eelgrass beds represented two distinct habitats within the Kariega Estuary. Within the salt marsh, the family Mugilidae were numerically dominant contributing 83% of the total catch. Within the eelgrass beds, the sparid, Rhabdosargus holubi and representatives of the family Gobidae contributed 36.3% and 33.9% respectively to the total catch. Estuaries with a wide range of microhabitats have been demonstrated to support a more diverse ichthyofaunal community. Shallow water habitats in general are important areas for juvenile fish within estuaries. Taylor’s salt marsh provides an alternative shallow water habitat, occupied by a distinct ichthyofaunal community composition, with increased food availability and decreased predation pressure, for a wide range of fish species.

Page generated in 0.0744 seconds