• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of predicted sea-level rise on the salt marsh of the Swartkops, Kromme and Knysna estuaries

Schmidt, Jadon January 2013 (has links)
Salt marshes are coastal wetlands that are highly productive and biologically diverse ecosystems. These systems are under threat from rising sea levels which are predicted to accelerate in the future. Salt marsh habitats of the Swartkops, Kromme and Knysna estuaries were examined to determine their structure along an elevation gradient and how this structure has changed over the past six decades, what the primary drivers of this structure were and whether the salt marsh surface is stable, rising or declining relative to predicted sea level rise. During this study the following main hypothesis was tested: The environmental drivers of salt marsh zonation are elevation above mean sea level (AMSL), soil moisture and soil salinity, all of which will be impacted by the predicted rise in sea level of 1.48 mm.y-1, unless the salt marshes are able to accrete at a rate such that surface elevation gain is sufficient to offset the rate of sea level rise. The results showed that the salt marsh vegetation structure followed a predictable pattern down the elevation gradient with distinct supratidal, intertidal and subtidal habitats identified for each estuary. These three zones occurred between elevations around Mean Sea Level of -0.86 to 2.42 AMSL for Swartkops, -0.3 to 2.95 m AMSL for Kromme and -0.48 to 3.14 m AMSL for Knysna. A floodplain component was also identified in the Swartkops estuary, which was restricted to the upper reaches. During the last 60 years, losses of intertidal and supratidal salt marsh for Swartkops were 74.31 ha and 30.23 ha respectively, 17.01 ha of intertidal and supratidal salt marsh was lost in Kromme while intertidal salt marsh in Knysna has diminished by 168 ha. These losses were mainly attributed to developmental pressure, although there are indications that rising sea levels are becoming more influential in the lower reaches. The main environmental drivers for salt marsh structure in the Swartkops were shown to be soil moisture content and elevation, soil moisture and organic content for Kromme while elevation and soil redox potential were dominant in Knysna. In a comparison of all three systems, soil moisture content and redox potential were found to be the most important drivers of vegetation distribution. Elevation dictates tidal inundation periodicity and frequency, and thus acts to influence all edaphic factors driving vegetation distribution. Results indicated that the salt marsh surface elevation of the lower and middle sections of the Swartkops, Kromme and Knysna estuaries are generally declining relative to current sea level rise. Where increases in surface elevation (relative to current sea level rise) were recorded, the majority of the accretion occurred after episodic flooding in winter 2011. These increases typically occurred in the upper reaches and were attributed to the deposition of fluvial sediments as a result of these floods. Results for Knysna indicate that while a majority of the salt marsh surface is accreting vertically, only three areas are increasing their elevation at a rate at least equal to current sea level rise. In these areas, developmental pressures will prevent a landward transgression of the salt marsh, forming an artificial “coastal squeeze”. Geomorphological limitations (steep hills adjacent to the salt marsh) will prevent any transgression in the upper reaches of the Kromme Estuary. Supratidal habitat in the upper reaches of the Swartkops estuary, if undeveloped, will provide the only viable habitat for the salt marsh to migrate into, given sufficient surface elevation.
2

Influence of sedimentological and hydrological processes on the distribution of the Spartina maritima salt marsh in the Keurbooms Estuary, Western Cape

Mfikili, Athi Nkosibonile January 2017 (has links)
Salt marshes are some of the most productive ecosystems in the world and have been the centre of attention over the past few decades, due to their decline as a result of global climate change and anthropogenic impacts. The growth of salt marshes is determined by substrate type, soil conductivity and elevation. The permanently open Keurbooms Estuary along the south-east coast of South Africa is subjected to occasional fluvial flooding and its intertidal area lacks well developed salt marshes, with Spartina maritima restricted to the lower reaches of the Bitou tributary and a few sections of the Keurbooms tributary. Presumeably because of fine sediment habitat in the confluence and lower Bitou tributary. The salinity of the estuarine water ranges between 0.1 – 26.9 and 3.2 – 35.3 in the Bitou and Keurbooms tributaries respectively. A typical salt wedge salinity pattern is common in the Keurbooms tributary where saline water often intrudes underneath the freshwater, especially during high river flows. The following hypotheses were developed and tested in this study: The limited spatial distribution of S. maritima in the Keurbooms Estuary is due to limited availability of fine sediment habitat; and the source of the fine sediment in the estuary is the Bitou tributary rather than the Keurbooms tributary or the sea. It was further postulated that after sediment characteristics, floods are the major hydrological driver determining the distribution of S. maritima in the Keurbooms Estuary. The results of the surveys of the estuarine channel bottom sediments showed that the Keurbooms tributary was mostly characterized by the sand-size sediment fraction derived from the feldspathic and sandstone with evidence of fine sediment fractions restricted to the upper reaches at the confluence with Whiskey Creek. The Bitou was almost always composed of coarse sized sediments in the upper reaches, fine sediment deposits in the middle and lower reaches and medium sorted sand with almost no clay or calcium carbonate in the estuarine component below the confluence of the tributaries. These findings were further supported by the surface sediment deposited within the S. maritima intertidal salt marsh, which showed finer sediment deposits in the Bitou marsh compared to the Keurbooms marsh surface. Similar results were also found in the sediment cores, with the Keurbooms marsh sediment becoming finer with increasing depth whereas fine sediments reduced with depth in the Bitou marsh. The results of the sediment mineralogy indicated that the increased concentrations of clay minerals in the S. maritima surface sediments are derived from the Bokkeveld shale, siltstone and clay slate exposed above the N2 Bridge in the Keurbooms Estuary. GIS mapping shows that S. maritima has been declining over the past two decades, with rapid decreases especially evident after big flooding events. The GIS mapping also indicates that the patches of the S. maritima in the Keurbooms tributary are more exposed to big floods than the Bitou marsh. Despite showing an overall decline, S. maritima area coverage remained more consistent in the lower reaches of the Bitou tributary than in the Keurbooms tributary. Despite the larger and more persistent area cover, the S. maritima plants were shorter and less dense than the plants growing in the sandy substrate. The black/grey colouration of soil with increasing depth in the Bitou tributary was an indication of the reduced state of the soil caused by prolonged waterlogged conditions. The roots of S. maritima in both tributaries were mostly restricted to the sub-surface substrate layer (i.e. 0 – 0.25 m), although the Bitou populations showed more vegetative propagation than the Keurbooms populations. This mechanism of reproduction was also demonstrated during the transplant experiment which showed a greater number of new stem production in the fine sediment substrates compared to the sandy silt substrates. Although accretion rates were not determined in this study, the short-term sediment deposition rates revealed that sedimentation is active in the marshes of the Keurbooms Estuary. Therefore, in spite of showing a decline in area cover, the production of viable seed and observed vegetative propagation suggest that the S. maritima is likely to colonize open stable intertidal mudflats / sandflats, thus maintaining its distribution as an intertidal species in the salt marshes of the Keurbooms Estuary.

Page generated in 0.0912 seconds