• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of salts on the solubility of other salts in nonaqueous solvents,

Seward, Ralph Pray. January 1900 (has links)
Thesis (Ph. D.)--Brown University, 1925.
2

Design of poorly soluble drug salts : pharmaceutical chemical characterization of organic salts /

Parshad, Henrik. January 2003 (has links)
Ph.D.
3

Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin

Mesallati, H., Umerska, A., Paluch, Krzysztof J., Tajber, L. 01 June 2017 (has links)
yes / Ciprofloxacin (CIP) is a poorly soluble drug that also displays poor permeability. Attempts to improve the solubility of this drug to date have largely focused on the formation of crystalline salts and metal complexes. The aim of this study was to prepare amorphous solid dispersions (ASDs) by ball milling CIP with various polymers. Following examination of their solid state characteristics and physical stability, the solubility advantage of these ASDs was studied, and their permeability was investigated via parallel artificial membrane permeability assay (PAMPA). Finally, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the ASDs were compared to those of CIP. It was discovered that acidic polymers, such as Eudragit L100, Eudragit L100C==, Carbopol and HPMCAS, were necessary for the amorphization of CIP. In each case, the positively charged secondary amine of CIP was found to interact with carboxylate groups in the polymers, forming amorphous polymeric drug salts. Although the ASDs began to crystallize within days under accelerated stability conditions, they remained fully XCray amorphous following exposure to 90% RH at 25 oC, and demonstrated higher than predicted glass transition temperatures. The solubility of CIP in water and simulated intestinal fluid was also increased by all of the ASDs studied. Unlike a number of other solubility enhancing formulations, the ASDs did not decrease the permeability of the drug. Similarly, no decrease in antibiotic efficacy was observed, and significant improvements in the MIC and MBC of CIP were obtained with ASDs containing HPMCASC") and HPMCASCMG. Therefore, ASDs may be a viable alternative for formulating CIP with improved solubility, bioavailability and antimicrobial activity.

Page generated in 0.0894 seconds