• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating saltwater anglers' value orientations, beliefs and attitudes related to marine protected areas : a dissertation /

Salz, Ronald J. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Massachusetts Amherst, 2002. / "September 2002." Includes bibliographical references (p. 199-207). Also available online in PDF format via the NOAA Coastal Services Center home page.
2

Optimal bioeconomic management of changing marine resources

Moberg, Emily Alison January 2016 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Biology; and the Woods Hole Oceanographic Institution), 2016. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Marine populations are increasingly subjected to changing conditions whether through harvest or through broad-scale habitat change. Historically, few models have accounted for such trends over time, and even fewer have been used to study how trends affect optimal harvests. I developed and analyzed several models that explore, first, endogenous change caused by harvest and, second, exogenous change from factors (such as rising ocean temperatures) outside harvesters' control. In these models, I characterized the profit-or yield-maximizing strategy when harvesting damages habitat in a multispecies fishery, when harvest creates a selective pressure on dispersal, and when rising temperatures cause changes in vital rates. I explore this last case in both deterministic and stochastic environments, and also allow the harvester to learn about unknown parameters of the stock recruitment model while harvesting. I also develop an unambiguous definition of and describe a statistical test for a shift in a species' spatial distribution. My results demonstrate that optimal harvesting strategies in a changing environment differ in important ways from optimal strategies in a constant environment. / by Emily Alison Moberg. / Ph. D.

Page generated in 0.0608 seconds