• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 12
  • 12
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Resprouting and multi-stemming and the role of the persistence niche in the structure and dynamics of subtropical coastal dune forest in KwaZulu-Natal province, South Africa.

Nzunda, Emmanuel F. January 2008 (has links)
Resprouting is an important means of plant regeneration especially under conditions that do not favour regeneration through seeding such as frequent disturbances, low productivity, unfavourable soil conditions, extreme cold and limited understorey light availability. Sprouts may be advantageous over seedlings because they have higher survival and growth rates than seedlings, since they use resources from parent plants unlike seedlings that have to acquire their own resources. Resprouting is well documented for ecosystems that experience severe disturbances that damage aboveground biomass. For example, resprouting is important for plant persistence against fire in fire-prone savannas and Mediterranean shrub-lands, and hurricanes and cyclones in tropical forests. In these ecosystems, resprouting often results in multi-stemming, because this dilutes the risk of damage among many stems, improving the chances of individual survival. This study was conducted at coastal dune forest at Cape Vidal in north-eastern South Africa, where there is a high incidence of multi-stemmed trees due to resprouting in response to chronic disturbances of low severity. This study examines (1) the importance of resprouting to tree survival and dynamics in an environment where disturbance severity is low but pervasive, and (2) how this resprouting strategy differs from the more familiar sprouting response to severe disturbances such as fire and hurricanes. Analysis of the relationship between multi-stemming and a number of disturbances potentially causing multi-stemming revealed that stem leaning and substrate erosion were the most important disturbances associated with multi-stemming. There were fewer multistemmed trees on dune slacks that had a stable substrate and were protected from sea winds than on dune crests and slopes that had unstable substrate and were exposed to sea winds. Trees resprouted and became multi-stemmed from an early stage to increase their chances of survival against leaning caused by strong sea winds and erosion, and occasional slumping of the unstable dune sand substrate. These low severity disturbances are persistent and are referred to as chronic disturbances in this thesis. As a result of these chronic disturbances, both single and multi-stemmed trees had short stature because taller individuals that emerged above the tree canopy would be exposed to wind damage. Under chronic disturbances plants may manifest a phylogenetically determined sprouting response. However, in this study resprouting and multi-stemming were the results of the tree-disturbance interaction and not a property of a plant or species and were not phylogenetically constrained. Because the disturbances are predominantly of low severity, leaning trees were able to regain the vertical orientation of the growing section by turning upward (a process referred to as ‘turning up’ in this study) and hence survive without resprouting. Species that were prone to turning upward had a low incidence and degree of leaning of their individuals, low frequency of loss of primary stems and high abundance of individuals. Although turning up is less costly to the individual than resprouting, it could only be used by leaning trees that had small angles of inclination and were not eroded. High intensities of the latter require that individuals resprout to survive. The form and function of resprouting varied between seedlings and juvenile and mature trees. Resprouting in seedlings resulted in a single replacement shoot, unlike sprouting in juvenile and mature trees that resulted in multi-stemmed trees. Like sprouting in juvenile and mature trees, sprouting in seedlings was not phylogenetically constrained. Resprouting in seedlings increased seedling persistence; hence species with more sprout seedlings had larger individual seedlings and seedling banks. Resprouting in seedlings increased the chances of seedling recruitment, whereas resprouting in juvenile and mature trees increased the chances of an established plant maintaining its position in the habitat. After disturbances of high severity, which destroy the photosynthesizing parts, plants resprout using carbohydrates stored below- or above ground. In this study, good resprouters stored more carbohydrates both below- and above ground than poor resprouters. The carbohydrates were mobilized for resprouting after disturbance. More carbohydrates were stored in stems than in roots because the prevailing disturbances were mostly of low severity and hence above ground resources were readily available. Similar to storage by plants in severely disturbed habitats, carbohydrates were stored by reserve formation, which competes for carbohydrates with growth and maintenance and forms permanent storage, rather than accumulation, which temporarily stores carbohydrates in excess of demands for growth and maintenance. Stored carbohydrates are not necessary for resprouting of plants after disturbances of low severity because they can resprout using resources remobilized directly from the disturbed photosynthesizing parts. However, in this study, stored carbohydrates served as a bet-hedge against occasional severe disturbances that occurred in addition to chronic disturbances. Allocation of carbohydrates to permanent storage diverts them from growth and reproduction and hence good resprouters had lower growth rates, seed output, seed size and seedling recruitment than poor resprouters. However, the costs of these traits that resulted in low recruitment from seed by good resprouters, were compensated for by high persistence of established individuals of good resprouters through recruitment of sprout stems. This study demonstrates that resprouting is not only advantageous in severely disturbed environments, but also in environments where disturbances are of low severity but nevertheless confer an advantage on individuals that persist. Thus in forest environments where aboveground biomass is seldom destroyed and individuals are relatively long-lived, resprouting can confer significant fitness and selective advantage on individuals. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
22

Foredune formation at Tugela River mouth.

Olivier, Mervin John. January 1998 (has links)
This study examines foredune evolution along a 2100 m section of coast adjacent to the Tugela River. The foredunes vary in both height and shape along the study area and form the southern most extension of the Tugela foredune-ridge plain. Sand accumulation and erosion was measured at regular intervals over a 30 month period by tacheometric surveys. The foredunes and beaches are comprised of over 99 % sand. The sediment was predominantly composed of quartz and feldspar with subordinate lithic fragments. The quartz grains display conchoidal fractures and mechanical v-shaped pits and curved grooves. The beach and dune sand is well sorted and slightly negatively skewed with a mean grain size of 1.62 ф. The vegetation structure and floristic composition of the foredunes are explored. A range of factors influencing foredune morphology and evolution, including canopy density, height and distribution, wind velocity and a variety of ecological and environmental processes are examined. Ridge and swale morphology as well as alongshore variation in the dunefield could not be related to biological processes. The development of a foredune-ridge topography depends on a large sediment supply from the Tugela River over the long-term. Periods of high discharge introduce a fresh source of sediment to the littoral zone. Reworking of fluvial sediment landwards results in wide beaches. Onshore winds transport the sand from the beaches to the foredunes. Scaevola thunbergii encourages rapid vertical accretion and hummock dunes are formed. Lateral extensive invasion by seedlings may result in the hummock dunes joining to form coast parallel foredunes. Under periods of reduced sediment discharge erosion of the shoreline results in steep narrow beaches. Despite a negative beach budget foredunes continue to accrete vertically. Marine erosion results in either the complete destruction of embryo foredunes or their landward shift. Natural breaks in the dune crestline were attributed to changes in the delivery of sediment to the beaches. The processes operating in the study area conform to Psuty's (1988,1989) sediment budget model of foredune development. Sediment availability to the coastline produces characteristic morphologies. / Thesis (M.Sc.)-University of Natal, Durban, 1998.
23

Studies on dune rehabilitation techniques for mined areas at Richards Bay, Natal

Moll, John Bingham January 1993 (has links)
Rehabilitation is a dynamic process influenced by factors related to more than one field of ecology. It is therefore necessary to consider all these components when assessing the rehabilitation, although in the initial stages the successful revegetation of the disturbed areas is the most important criterion. Richards Bay Minerals, on whose mining site this project was carried out, is dredge mining heavy minerals on the north coast of Natal, where they have rehabilitated mined areas since 1978. This project has been carried out to establish: 1) The success of their dune forest rehabilitation using quantitative techniques. 2) The available seed bank in their rehabilitation stands. 3) The similarities in the succession taking place in rehabilitation stands compared to the revegetated stands in the vicinity of Richards Bay. 4) The best methods for creating alternative vegetation communities, especially grasslands, with a high species diversity on the mined tailings. This study reviews only the success of rehabilitation of the natural vegetation but other studies focusing on the insect, reptile, mammal and bird populations are also being undertaken by other researchers. No particular method of determining the success of vegetation rehabilitation has been chosen by restoration ecologists. Therefore in this study a broad range of quantitative techniques were used to show whether successional changes are occurring in the vegetation and physical environment. The results obtained from sampling the rehabilitated vegetation have shown that both the species richness and diversity are increasing as the returned vegetation matures. Levels of soil properties such as Sodium, Phosphate, Calcium and percentage organic matter have also risen with increasing stand age. Community complexity is also increasing with stand age, and TWINSPAN and DECORANA plots have separated out the differently aged stands based on their differences. A "pilot" study was done on the seed bank present in the rehabilitation stands. This has shown the presence of large amounts of early successional, mostly herbaceous species. Seeds of later successional and woody species were scarce which may be a result of the sampling intensity used. However seeds of late successional ground cover species were found in the older stands. Comparisons between the natural revegetation of disturbed areas in the vicinity of Richards Bay and the rehabilitation stands revealed similarities in both species composition and complexity. Species richness and diversity values are comparatively similar for the younger revegetated and older rehabilitation stands, and lWlNSPAN and DECORANA analysis techniques clustered the samples recorded from these areas in close proximity on their relative plots. The oldest revegetated sites contain a number of species found in the rehabilitated vegetation but as Acacia karroo has thinned-out in these stands many of these other species are now mature individuals. Attempts at rehabilitating an area of grassland at Richards Bay Minerals has not produced satisfactory species diversity and experimental manipulations were used to try and increase the diversity of the existing Eragrostis curvula dominated community. Of the several treatments used for the manipulation, a combination of burning and further topsoiling was the most successful in reducing Eragrostis importance and in increasing the species richness. Grassland topsoil spread directly onto the bare tailings produced an extensive vegetation covering over a short period but species richness was not significantly greater than for the existing Eragrostis dominated grassland, and further treatments and management needs to continue if this technique is to be employed. Only a limited amount of alien infestation of the rehabilitated areas was evident from the sampling undertaken during this research. As the removal of alien plants is an ongoing process and the rehabilitation stands are continuously monitored to identify any new invaders, this is not expected to become a problem. From the results of work done overseas and the rehabilitation carried out in South Africa it appears that it is possible to return natural vegetation communities on mined areas. That this is a lengthy process is to be expected but by manipulating the vegetation and continuously monitoring the process it may be possible to speed up development. Areas in need of further research have been identified based on the findings of this project. This will help to reinforce the undertaking of management proposals that will enhance the vegetation recovery and the success of the rehabilitation programme.
24

The effects of dune stabilization on the spatiotemporal distribution of soil moisture resources, Northern Great Plains, Canada

Koenig, Daniel Edgar January 2012 (has links)
In dryland environments, the availability of soil moisture is the primary control on plant species’ distributions. In the sandhill regions of the northern Great Plains, vegetation establishment has transformed highly mobile, desert-like dune fields into stabilized landscapes covered by mixed-grassland prairie. This study examines how dune stabilization has modified the spatiotemporal distribution of soil moisture resources. An ergodic (space-for-time) approach was used, comparing soil moisture dynamics on active and vegetation-stabilized dunes in the Bigstick Sand Hills of southwestern Saskatchewan. Results indicate that while dune stabilization has enhanced near-surface soil moisture availability, deeper profile soil moisture recharge is reduced. Through better understanding how vegetation has modified soil moisture dynamics in stabilizing sandhill regions, better management practices may be implemented to maintain water resource availability and ecosystem health. / xii, 97 leaves : ill., maps ; 29 cm
25

Morphology, patterns and processes in the Oyster Bay headland bypass dunefield, South Africa / Investigation of the relationship between morphology, patterns and processes in a headland bypass dunefield, in the Eastern Cape, South Africa

McConnachie, Lauren Bernyse January 2013 (has links)
Studies of the dunefield systems crossing the Cape St. Francis headland in the Eastern Cape have focused on the role that wind plays in sediment transfer in coastal dunefield systems, with limited consideration of the role of water. The aim of this study was to improve understanding of the morphology, processes and patterns within the Oyster Bay HBD system, focussing particularly on surface water and groundwater interactions and the role of surface water in sediment transfer across the dunefield system. An extensive field survey was conducted, to collect related data, complimented by spatial and temporal analysis of the study area using GIS. The key findings from this research were the apparent differences between the western and eastern regions of the dunefield with regard to specific drivers and the respective processes and responses. Wind is the major driver of change up to and across the crest of the dunefield. In the eastern region water (ground water, surface water and the Sand River System) is the primary agent of sediment flux through processes of aggregation and slumping as well as episodic events including debris flows. This study has highlighted a need for further quantitative studies that investigate the movement of sediment through dunefield systems such as this (where water is at or near the land surface). The paradigm that sediment flux is entirely due to wind is almost certainly simplistic, and deeper understanding of these systems is needed / Maiden name: Elkington, Lauren
26

The influence of biophysical feedbacks and species interactions on grass invasions and coastal dune morphology in the Pacific Northwest, USA

Zarnetske, Phoebe Lehmann, 1979- 09 September 2011 (has links)
Biological invasions provide a unique opportunity to study the mechanisms that regulate community composition and ecosystem function. Invasive species that are also ecosystem engineers can substantially alter physical features in an environment, and this can lead to cascading effects on the biological community. Aquatic-terrestrial interface ecosystems are excellent systems to study the interactions among invasive ecosystem engineers, physical features, and biological communities, because interactions among vegetation, sediment, and fluids within biophysical feedbacks create and modify distinct physical features. Further, these systems provide important ecosystem services including coastal protection afforded by their natural features. In this dissertation, I investigate the interactions and feedbacks among sand-binding beach grass species (a native, Elymus mollis (Trin.), and two non-natives, Ammophila arenaria (L.) Link and A. breviligulata Fernald), sediment supply, and dune shape along the U.S. Pacific Northwest coast. Dunes dominated by A. arenaria tend to be taller and narrower compared to the shorter, wider dunes dominated by A. breviligulata. These patterns suggest an ecological control on dune shape, and thus, coastal vulnerability to overtopping waves. I investigate the causes and consequences of these patterns with experiments, field observations, and modeling. Specifically, I investigate the relative roles of vegetation and sediment supply in shaping coastal dunes over inter-annual and multi-decadal time scales (Chapter 2), characterize a biophysical feedback between beach grass species growth habit and sediment supply (Chapter 3), uncover the mechanisms leading to beach grass coexistence and whether A. breviligulata can invade and dominate new sections of coastline (Chapter 4), and examine the non-target effects resulting from management actions that remove Ammophila for the recovery of the threatened Western Snowy plover (Charadrius alexandrinus nivosus) (Chapter 5). I found that vegetation and sediment supply play important roles in dune shape changes across inter-annual and multi-decadal time scales (Chapter 2). I determined that a biophysical feedback between the beach grass growth habits and sediment supply results in species-specific differences in sand capture ability, and thus, is a likely explanation for differences in dune shape (Chapter 3). I found that all three beach grass species can coexist across different sediment deposition rates, and that this coexistence is largely mediated by positive direct and indirect species interactions. I further determined that A. breviligulata is capable of invading and dominating the beach grass community in regions where it is currently absent (Chapter 4). Combined, these findings indicate that A. breviligulata is an inferior dune building species as compared to A. arenaria, and suggest that in combination with sediment supply gradients, these species differences ultimately lead to differences in dune shape. Potential further invasions of A. breviligulata into southern regions of the Pacific Northwest may diminish the coastal protection ability of dunes currently dominated by A. arenaria, but this effect could be moderated by the predicted near co-dominance of A. arenaria in these lower sediment supply conditions. Finally, I found that the techniques used to remove Ammophila for plover recovery have unintended consequences for the native and endemic dune plant communities, and disrupt the natural disturbance regime of shifting sand. A whole-ecosystem restoration focus would be an improvement over the target-species approach, as it would promote the return of the natural disturbance regime, which in turn, would help recover the native biological community. The findings from this dissertation research provide a robust knowledge base that can guide further investigations of biological and physical changes to the coastal dunes, can help improve the management of dune ecosystem services and the restoration of native communities, and can help anticipate the impacts of future beach grass invasions and climate change induced changes to the coast. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 22, 2011 - March 22, 2012

Page generated in 0.0522 seconds