• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ressonâncias escalares: relações dinâmicas entre processos de espalhamento e decaimento / Scalar resonances: dynamic relations between scattering and decay processes

Boito, Diogo Rodrigues 16 October 2007 (has links)
A existência de um méson escalar-isoescalar leve, conhecido como ?, foi proposta pela primeira vez na década de 60. A partícula tinha então um papel importante na construção teórica das interações ?? mas, apesar dos esforços experimentais, ela não foi detectada nos anos que se seguiram. Essa situação foi radicalmente alterada em 2001, quando uma ressonância escalar foi descoberta nos canais ?+?- do decaimento D+ -> ?+?-?+ e recebeu o rótulo ?(500). Sua existência é bem estabelecida hoje em dia. Contudo, no tratamento dos dados dos vários grupos experimentais são empregadas expressões com pouca base teórica e, por isso, os valores de sua massa e largura ainda são mal conhecidos. Neste tipo de decaimento, a formação da ressonância pode se dar no vértice fraco. Em sua subseqüente propagação, ocorrem as chamadas interações de estado final, cuja descrição não é trivial. Normalmente, essas interações não são levadas em conta de maneira criteriosa na análise de dados experimentais. Neste trabalho introduzimos uma função _(s) que descreve a propagação e decaimento da ressonância em presença das interações de estado final. No regime elástico, a fase de _(s) é determinada pelo chamado teorema de Watson, segundo o qual ela deve ser a mesma do espalhamento. Conseguimos estabelecer, sem ambigüidades, como a informação do espalhamento deve ser usada de forma a determinar não somente a fase de _(s), mas também seu módulo. Nosso principal resultado é uma expressão para _(s) em termos da fase elástica e de uma outra fase relacionada a uma integral de loop bem controlada. Três casos particulares foram explorados numericamente: os modelos sigma linear e não linear e ainda um modelo fenomenológico que leva em conta o acoplamento de canais p´?on-p´?on e k´aon-k´aon. Em consonância com a teoria quântica de campos, nosso resultado incorpora a unitariedade, considera a ressonância como grau de liberdade explícito e representa, ainda, uma generalização do procedimento usual de unitarizacao pela matriz K. Por permitir uma ligação clara entre espalhamento e produção, a função _(s) pode ser útil na análise de dados experimentais e ajudar na determinação da posição do pólo do ? e de outras ressonâncias escalares. / The existence of a light scalar-isoscalar meson, known as ?, was suggested in the 60\'s. This particle played an important role in the theoretical construction of ?? interactions but, in spite of all experimental effort, it failed to be detected. This scenario changed radically in 2001, when a scalar-isoscalar resonance was discovered in the ?+?- channel of the D+ -> ?+?-?+ decay and was called ?(500). Nowadays, its existence is rather well established. However, in the analysis of experimental data, expressions loosely based on theory are employed and therefore its mass and width are still not well known. In this kind of decay, the production of the resonance may occur at the weak vertex. When it propagates, final state interactions take place. Usually these interactions are not properly taken into account in data analysis. In this work, we introduce a function _(s), which describes the propagation and decay of the resonance in the presence of the final state interactions. In the elastic regime, the phase of _(s) is determined by the Watson\'s theorem, which states that it must be the same as the scattering phase. We were able to establish, unambiguously, how the information from scattering should be used to determine not only the phase of _(s) but also its modulus. Our main result is an expression for _(s) in terms of the elastic phase and another one related to a well controlled loop integral. Three special cases are explored numerically, namely: the linear and non linear sigma models and a phenomenological model that takes into account the coupling between pion-pion and kaon-kaon channels. In agreement with quantum field theory, our result encompasses unitarity, treats the resonance as an explicit degree of freedom and, moreover, corresponds to a generalisation of the usual K-matrix unitarization procedure. Since it represents a clear way to relate scattering and production, our function _(s) can be useful in data analysis and may be instrumental in the determination of the pole position of the ? as well as other scalar resonances.
2

Ressonâncias escalares: relações dinâmicas entre processos de espalhamento e decaimento / Scalar resonances: dynamic relations between scattering and decay processes

Diogo Rodrigues Boito 16 October 2007 (has links)
A existência de um méson escalar-isoescalar leve, conhecido como ?, foi proposta pela primeira vez na década de 60. A partícula tinha então um papel importante na construção teórica das interações ?? mas, apesar dos esforços experimentais, ela não foi detectada nos anos que se seguiram. Essa situação foi radicalmente alterada em 2001, quando uma ressonância escalar foi descoberta nos canais ?+?- do decaimento D+ -> ?+?-?+ e recebeu o rótulo ?(500). Sua existência é bem estabelecida hoje em dia. Contudo, no tratamento dos dados dos vários grupos experimentais são empregadas expressões com pouca base teórica e, por isso, os valores de sua massa e largura ainda são mal conhecidos. Neste tipo de decaimento, a formação da ressonância pode se dar no vértice fraco. Em sua subseqüente propagação, ocorrem as chamadas interações de estado final, cuja descrição não é trivial. Normalmente, essas interações não são levadas em conta de maneira criteriosa na análise de dados experimentais. Neste trabalho introduzimos uma função _(s) que descreve a propagação e decaimento da ressonância em presença das interações de estado final. No regime elástico, a fase de _(s) é determinada pelo chamado teorema de Watson, segundo o qual ela deve ser a mesma do espalhamento. Conseguimos estabelecer, sem ambigüidades, como a informação do espalhamento deve ser usada de forma a determinar não somente a fase de _(s), mas também seu módulo. Nosso principal resultado é uma expressão para _(s) em termos da fase elástica e de uma outra fase relacionada a uma integral de loop bem controlada. Três casos particulares foram explorados numericamente: os modelos sigma linear e não linear e ainda um modelo fenomenológico que leva em conta o acoplamento de canais p´?on-p´?on e k´aon-k´aon. Em consonância com a teoria quântica de campos, nosso resultado incorpora a unitariedade, considera a ressonância como grau de liberdade explícito e representa, ainda, uma generalização do procedimento usual de unitarizacao pela matriz K. Por permitir uma ligação clara entre espalhamento e produção, a função _(s) pode ser útil na análise de dados experimentais e ajudar na determinação da posição do pólo do ? e de outras ressonâncias escalares. / The existence of a light scalar-isoscalar meson, known as ?, was suggested in the 60\'s. This particle played an important role in the theoretical construction of ?? interactions but, in spite of all experimental effort, it failed to be detected. This scenario changed radically in 2001, when a scalar-isoscalar resonance was discovered in the ?+?- channel of the D+ -> ?+?-?+ decay and was called ?(500). Nowadays, its existence is rather well established. However, in the analysis of experimental data, expressions loosely based on theory are employed and therefore its mass and width are still not well known. In this kind of decay, the production of the resonance may occur at the weak vertex. When it propagates, final state interactions take place. Usually these interactions are not properly taken into account in data analysis. In this work, we introduce a function _(s), which describes the propagation and decay of the resonance in the presence of the final state interactions. In the elastic regime, the phase of _(s) is determined by the Watson\'s theorem, which states that it must be the same as the scattering phase. We were able to establish, unambiguously, how the information from scattering should be used to determine not only the phase of _(s) but also its modulus. Our main result is an expression for _(s) in terms of the elastic phase and another one related to a well controlled loop integral. Three special cases are explored numerically, namely: the linear and non linear sigma models and a phenomenological model that takes into account the coupling between pion-pion and kaon-kaon channels. In agreement with quantum field theory, our result encompasses unitarity, treats the resonance as an explicit degree of freedom and, moreover, corresponds to a generalisation of the usual K-matrix unitarization procedure. Since it represents a clear way to relate scattering and production, our function _(s) can be useful in data analysis and may be instrumental in the determination of the pole position of the ? as well as other scalar resonances.

Page generated in 0.0692 seconds