• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A test of multiple ionization scaling in Sc

Newcomb, Joal J. January 1979 (has links)
Call number: LD2668 .T4 1979 N48 / Master of Science
2

Comparison of a fluidized bed combustor and its scale model

Walsh, John Joseph January 1980 (has links)
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by John Joseph Walsh. / B.S.
3

Experimental verification of the simplified scaling laws for bubbling fluidized beds at large scales

Sanderson, Philip John, 1974- January 2002 (has links)
Abstract not available
4

Asymmetric Halo Current Rotation In Post-disruption Plasmas

Saperstein, Alex Ryan January 2023 (has links)
Halo currents (HCs) in post-disruption plasmas can be large enough to exert significant electromagnetic loads on structures surrounding the plasma. These currents have axisymmetric and non-axisymmetric components, both of which pose threats to the vacuum vessel and other components. However, the non-axisymmetric forces can rotate, amplifying the displacements they cause when the rotation is close to the structures’ resonant frequencies. A new physically motivated scaling law has been developed that describes the rotation frequencies of these HCs and has been validated against measurements on HBT-EP, Alcator C-Mod, and other tokamaks. This scaling law can describe the time-evolution of the asymmetric HC rotation throughout disruptions on HBT-EP as well as the time-averaged rotation on C-Mod. The scaling law can also be modified to include the edge safety factor at the onset of rotation (𝒒_𝑜𝑛𝑠𝑒𝑡), which significantly improves its validity when applied to machines like C-Mod, where 𝒒_𝑜𝑛𝑠𝑒𝑡 changes frequently. The 𝒒_𝑜𝑛𝑠𝑒𝑡 dependence is explained by the relationship between the poloidal structure of the HC asymmetries and the MHD instabilities that drive them, which has been observed experimentally for the first time using a novel set of current sensing limiter tiles installed on HBT-EP. The 1/𝑎² and 𝒒_𝑜𝑛𝑠𝑒𝑡-dependence of the rotation suggest that the HCs predominantly rotate poloidally. This remains consistent with the toroidal rotation observed on HBT-EP and other tokamaks through the “Barber Pole Illusion” and the direction of rotation’s dependence on the direction of 𝐼_𝑝. This scaling law is used to make projections for next generation tokamaks like ITER and SPARC, which predicts that rotation will be resonant on ITER. However, resonant effects can still be avoided if the duration of the disruption is kept short enough to prevent two rotations from being completed.

Page generated in 0.4596 seconds