Spelling suggestions: "subject:"can match"" "subject:"can batch""
1 |
Autonomous Mapping and Exploration of Dynamic Indoor Environments / Autonom kartläggning och utforskning av dynamiska inomhusmiljöerFåk, Joel, Wilkinson, Tomas January 2013 (has links)
This thesis describes all the necessary parts needed to build a complete system for autonomous indoor mapping in 3D. The robotic platform used is a two-wheeled Segway, operating in a planar environment. This, together with wheel odometers, an Inertial Measurement Unit (IMU), two Microsoft Kinects and a laptop comprise the backbone of the system, which can be divided into three parts: The localization and mapping part, which fundamentally is a SLAM (simultaneous localization and mapping) algorithm implemented using the registration technique Iterative Closest Point (ICP). Along with the map being in 3D, it also designed to handle the mapping of dynamic scenes, something absent from the standard SLAM design. The planning used by the system is twofold. First, the path planning - finding a path from the current position to a destination - and second, the target planning - determining where to go next given the current state of the map and the robot. The third part of the system is the control and collision systems, which while they have not received much focus, are very necessary for a fully autonomous system. Contributions made by this thesis include: The 3D map framework Octomap is extended to handle the mapping of dynamic scenes; A new method for target planning, based on image processing is presented; A calibration procedure for the robot is derived that gives a full six degree of freedom pose for each Kinect. Results show that our calibration procedure produces an accurate pose for each Kinect, which is crucial for a functioning system. The dynamic mapping is shown to outperform the standard occupancy grid in fundamental situations that arise when mapping dynamic scenes. Additionally, the results indicate that the target planning algorithm provides a fast and easy way to plan new target destinations. Finally, the entire system’s autonomous mapping capabilities are evaluated together, producing promising results. However, it also highlights some problems that limit the system’s performance such as the inaccuracy and short range of the Kinects or noise added and reinforced by the multiple subsystems / Detta exjobb beskriver delarna som krävs för att för bygga ett komplett system som autonomt kartlägger inomhusmiljöer i tre dimensioner. Robotplattformen är en Segway, som är kapabel att röra sig i ett plan. Segwayn, tillsammans med en tröghetssensor, två Microsoft Kinects och en bärbar dator utgör grunden till systemet, som kan delas i tre delar: En lokaliserings- och karteringsdel, som i grunden är en SLAM-algoritm (simultan lokalisering och kartläggning) baserad på registreringsmetoden Iterative Closest Point (ICP). Kartan som byggs upp är i tre dimensioner och ska dessutom hantera kartläggningen av dynamiska miljöer, något som orginalforumleringen av SLAM problemet inte klarar av. En automatisk planeringsdel, som består av två delar. Dels ruttplanering som går ut på att hitta en väg från sin nuvarande position till det valda målet och dels målplanering som innebär att välja ett mål att åka till givet den nuvarande kartan och robotens nuvarande position. Systemets tredje del är regler- och kollisionssystemen. Dessa system har inte varit i fokus i detta arbete, men de är ändå högst nödvändiga för att ett autonomt system skall fungera. Detta examensarbete bidrar med följande: Octomap, ett ramverk för kartläggningen i 3D, har utökats för att hantera kartläggningen av dynamiska miljöer; En ny metod för målplanering, baserad på bildbehandling läggs fram; En kalibreringsprocedur för roboten är framtagen som ger den fullständiga posen i förhållande till roboten för varje Kinect. Resultaten visar att vår kalibreringsprocedur ger en nogrann pose for för varje Kinect, vilket är avgörande för att systemet ska fungera. Metoden för kartläggningen av dynamiska miljöer visas prestera bra i grundläggande situationer som uppstår vid kartläggning av dynamiska miljöer. Vidare visas att målplaneringsalgoritmen ger ett snabbt och enkelt sätt att planera mål att åka till. Slutligen utvärderas hela systemets autonoma kartläggningsförmåga, som ger lovande resultat. Dock lyfter resultat även fram problem som begränsar systemets prestanda, till exempel Kinectens onoggranhet och korta räckvidd samt brus som läggs till och förstärks av de olika subsystemen.
|
2 |
Estimation of Local Map from Radar Data / Skattning av lokal karta från radardataMoritz, Malte, Pettersson, Anton January 2014 (has links)
Autonomous features in vehicles is already a big part of the automobile area and now many companies are looking for ways to make vehicles fully autonomous. Autonomous vehicles need to get information about the surrounding environment. The information is extracted from exteroceptive sensors and today vehicles often use laser scanners for this purpose. Laser scanners are very expensive and fragile, it is therefore interesting to investigate if cheaper radar sensors could be used. One big challenge when it comes to autonomous vehicles is to be able to use the exteroceptive sensors and extract a position of the vehicle and at the same time get a map of the environment. The area of Simultaneous Localization and Mapping (SLAM) is a well explored area when using laser scanners but is not that well explored when using radars. It has been investigated if it is possible to use radar sensors on a truck to create a map of the area where the truck drives. The truck has been equipped with ego-motion sensors and radars and the data from them has been fused together to get a position of the truck and to get a map of the surrounding environment, i.e. a SLAM algorithm has been implemented. The map is represented by an Occupancy Grid Map (OGM) which should only consist of static objects. The OGM is updated probabilistically by using a binary Bayes filter. To localize the truck with help of motion sensors an Extended Kalman Filter (EKF) is used together with a map and a scan match method. All these methods are put together to create a SLAM algorithm. A range rate filter method is used to filter out noise and non-static measurements from the radar. The results of this thesis show that it is possible to use radar sensors to create a map of a truck's surroundings. The quality of the map is considered to be good and details such as space between parked trucks, signs and light posts can be distinguished. It has also been proven that methods with low performance on their own can together with other methods work very well in the SLAM algorithm. Overall the SLAM algorithm works well but when driving in unexplored areas with a low number of objects problems with positioning might occur. A real time system has also been implemented and the map can be seen at the same time as the truck is manoeuvred.
|
Page generated in 0.0379 seconds