• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications and development of acoustic and microwave atomic force microscopy for high resolution tomography analysis / Applications et développement des microscopies à force atomique acoustique et micro-onde pour l'analyse tomographique haute résolution

Vitry, Pauline 10 June 2016 (has links)
La microscopie à force atomique (AFM) est un outil de caractérisation d’échantillons tant organiques qu’inorganiques d’intérêt en physique, en biologie et en métallurgie. Le champ d’investigation de la microscopie AFM reste néanmoins restreint à l’étude des propriétés surfaciques des échantillons et la caractérisation sub-surfacique à l’échelle nanométrique n’est pas envisageable au-delà de la nano-indentation. Lors de ce travail, nous nous sommes intéressés à deux techniques de sonde locale complémentaires pour l’investigation volumique haute résolution.La première technique proposée est la microscopie de champ proche ultrasonore (MS-AFM), mise en place et exploitée en collaboration avec Dr. L. Tétard de l’Université Centrale de Floride. Cette technique fournie des informations localisées en profondeur en utilisant des ondes acoustiques dans la gamme de fréquences du MHz. Une étude complète de l’influence des paramètres de fréquences a été réalisée sur des échantillons de calibration et a permis de valider un modèle d’interprétation numérique. Cette technique ultrasonore, non invasive, a été appliquée à la caractérisation de vésicules lipidiques au sein de bactéries lors d’une collaboration avec les Pr. A. Dazzi et M.-J. Virolle, de l’Université Paris Sud Orsay. Un couplage a été réalisé avec la microscopie AFM infra-rouge (AFM-IR). Cette étude a démontré le potentiel d’investigation et d’analyse volumique et chimique d’échantillons biologiques.La seconde technique étudiée est la microscopie micro-onde (SMM), développée en collaboration avec la société Keysight. Cette technique, tout comme la microscopie acoustique, est non invasive et conduit à une caractérisation physico-chimique basée sur l’interaction de micro-ondes (0.2-16 GHz) avec la matière. Dans le cas de métaux, un lien entre la fréquence et la profondeur d’investigation a été mis en évidence. Cette technique a été appliquée à l’étude de la diffusion d’élément chimique léger au sein de métaux et à la mesure des propriétés mécaniques des matériaux. L’ensemble de ces résultats ouvre un nouveau champ d’investigation de la tomographie 3D dans l’analyse volumique à l’échelle nanométrique que ce soit dans le domaine de la biologie ou de la métallurgie. / The atomic force microscope (AFM) is a powerful tool for the characterization of organic and inorganic materials of interest in physics, biology and metallurgy. However, conventional scanning probe microscopy techniques are limited to the probing surface properties, while the subsurface analysis remains difficult beyond nanoindentation methods. Thus, the present thesis is focused on two novel complementary scanning probe techniques for high-resolution volumetric investigation that were develop to tackle this persisting challenge in nanometrology. The first technique considered, called Mode Synthesizing Atomic Force Microscopy (MSAFM), has been exploited in collaboration with Dr. Laurene Tetard of University of Central Florida to explore the volume of materials with high spatial resolution by means of mechanical actuation of the tip and the sample with acoustic waves of frequencies in the MHz range. A comprehensive study of the impact of the frequency parameters on the performance of subsurface imaging has been conducted through the use of calibrated samples and led to the validation of a numerical model for quantitative interpretation. Furthermore, this non-invasive technique has been utilized to locate lipid vesicles inside bacteria (in collaboration with Pr. A. Dazzi and M.-J. Virolle of Université Paris Sud, Orsay). Furthermore, we have combined this ultrasonic approach with infra-red microscopy, to add chemical speciation aimed at identifying the subsurface features, which represents a great advance for volume and chemical characterization of biological samples. The second technique considered is the Scanning Microwave Microscopy, which was developed in collaboration with Keysight society. Similar to acoustic-based microscopy, this non-invasive technique provided physical and chemical characterizations based on the interaction of micro-waves radiations with the matter (with frequency ranging from 0.2 and 16 GHz). Particularly, for metallic samples we performed volumetric characterization based on the skin effect of the materials. On the other hand, we have used this technique to analyze the diffusion of light chemical elements in metals and measured the effect of changes in mechanical properties of materials on their conductivity.Overall, these results constitute a new line of research involving non-destructive subsurface high resolution analysis by means of the AFM of great potential for several fields of research.

Page generated in 0.1071 seconds