Spelling suggestions: "subject:"cattering transforms"" "subject:"cattering ztransforms""
1 |
Parametric Scattering NetworksGauthier, Shanel 04 1900 (has links)
La plupart des percées dans l'apprentissage profond et en particulier dans les réseaux de neurones convolutifs ont impliqué des efforts importants pour collecter et annoter des quantités massives de données. Alors que les mégadonnées deviennent de plus en plus répandues, il existe de nombreuses applications où la tâche d'annoter plus d'un petit nombre d'échantillons est irréalisable, ce qui a suscité un intérêt pour les tâches d'apprentissage sur petits échantillons.
Il a été montré que les transformées de diffusion d'ondelettes sont efficaces dans le cadre de données annotées limitées. La transformée de diffusion en ondelettes crée des invariants géométriques et une stabilité de déformation. Les filtres d'ondelettes utilisés dans la transformée de diffusion sont généralement sélectionnés pour créer une trame serrée via une ondelette mère paramétrée. Dans ce travail, nous étudions si cette construction standard est optimale. En nous concentrant sur les ondelettes de Morlet, nous proposons d'apprendre les échelles, les orientations et les rapports d'aspect des filtres. Nous appelons notre approche le Parametric Scattering Network. Nous illustrons que les filtres appris par le réseau de diffusion paramétrique peuvent être interprétés en fonction de la tâche spécifique sur laquelle ils ont été entrainés. Nous démontrons également empiriquement que notre transformée de diffusion paramétrique partage une stabilité aux déformations similaire à la transformée de diffusion traditionnelle. Enfin, nous montrons que notre version apprise de la transformée de diffusion génère des gains de performances significatifs par rapport à la transformée de diffusion standard lorsque le nombre d'échantillions d'entrainement est petit. Nos résultats empiriques suggèrent que les constructions traditionnelles des ondelettes ne sont pas toujours nécessaires. / Most breakthroughs in deep learning have required considerable effort to collect massive amounts of well-annotated data. As big data becomes more prevalent, there are many applications where annotating more than a small number of samples is impractical, leading to growing interest in small sample learning tasks and deep learning approaches towards them.
Wavelet scattering transforms have been shown to be effective in limited labeled data settings. The wavelet scattering transform creates geometric invariants and deformation stability. In multiple signal domains, it has been shown to yield more discriminative representations than other non-learned representations and to outperform learned representations in certain tasks, particularly on limited labeled data and highly structured signals. The wavelet filters used in the scattering transform are typically selected to create a tight frame via a parameterized mother wavelet. In this work, we investigate whether this standard wavelet filterbank construction is optimal. Focusing on Morlet wavelets, we propose to learn the scales, orientations, and aspect ratios of the filters to produce problem-specific parameterizations of the scattering transform. We call our approach the Parametric Scattering Network. We illustrate that filters learned by parametric scattering networks can be interpreted according to the specific task on which they are trained. We also empirically demonstrate that our parametric scattering transforms share similar stability to deformations as the traditional scattering transforms. We also show that our approach yields significant performance gains in small-sample classification settings over the standard scattering transform. Moreover, our empirical results suggest that traditional filterbank constructions may not always be necessary for scattering transforms to extract useful representations.
|
Page generated in 0.1046 seconds