Spelling suggestions: "subject:"scattering measurements"" "subject:"cattering measurements""
1 |
Mixtures of methane and water under extreme conditionsPruteanu, Ciprian Gabriel January 2018 (has links)
The hydrophobic effect has been a topic of research for decades, not only due to its importance as the primary building block of much of chemistry (it dictates which solvent can dissolve which solutes) and biology (guiding protein binding and gene expression) but also due to it being a fundamental physical process. The commonly held opinion is that 'like dissolve like', implying polar substances can readily mix with other polar substances, and similarly for apolar ones, but polar and apolar would separate and tend to stay isolated from one another (like oil in water). We have developed a quantitative imaging method that can be used in tandem with Raman spectroscopy in order to investigate the effect of high pressure on a model hydrophobic system - water and methane. Our study revealed an unexpectedly large increase in the amount of methane that can readily mix with water once a rather modest pressure has been applied to the system. Thus, the solubility of CH4 in H2O starts abruptly increasing at 1.3 GPa and reaches a maximum of 44(3) mole % at 2.1 GPa, showing no pressure dependence upon further compression. We have tried to reproduce the observed experimental behaviour using classical molecular dynamics simulations deploying a range of widely used water potentials (SPC/E, TIP4P, TIP3P), but unfortunately no quantitative or even qualitative agreement was reached with experiments. Finally, in order to understand the atomic level changes that enable this increased amount of methane to dissolve in water, we have performed neutron scattering measurements along with EPSR (empirical potential structure refinement) fits to the data in order to solve the structure of the fluid mixture. These revealed a tendency towards maintaining the H-bond network present in water and homogeneous mixing. Despite the network staying similar to the one found in pure fluid water at milder pressures and temperatures (close to ambient conditions), the H-bonds seem more disordered and show a greater variability in their lengths.
|
2 |
Utilisation de la cytométrie en flux pour une meilleure connaissance de la diffusion individuelle des particules : Application au phytoplancton / Using flow cytometer for a best known of individual diffusion of particles : Application to phytoplanktonMoutier, William 05 December 2016 (has links)
L'objectif était d'utiliser le cytomètre en flux (Cytosense, CytoBuoy b.v., NL) afin de comprendre l'influence des paramètres structurels et morphologiques des cellules phytoplanctoniques sur la rétrodiffusion. Nous avons analysé les propriétés optiques des cellules sur différentes phases de croissance. Une expérience en microcosme a été réalisée sur deux espèces (Thalassiosira pseudonana et Chlamydomonas Concordia) durant 20 jours. Les efficacités de diffusion avant et de côté de Thalassiosira pseudonana étaient respectivement 2,2 et 1,6 fois plus importantes que celles de Chlamydomonas Concordia. Les variations intra- et inter-espèces ont été expliquées par des simulations théoriques et des mesures in situ (biogéochimiques et observations au microscope à balayage électronique). Les mesures in situ ont permis d'obtenur des informations sur la structure des cellules (e.g. épaisseur de la frustule). L'efficacité de diffusion avant est impactée par l'agrégation et la taille des cellules. L'indice de réfraction réel du chloroplaste est un paramètre clé pouvant expliquer les variations de l'efficacité de côté. À l'avenir, nous recommandons d'utiliser un modèle à deux couches (cytoplasmes-chloroplaste) pour simuler les propriétés optiques des cellules phytoplanctoniques. Une analyse de la relation entre la concentration en carbone organique particulaire (POC) et le coefficient de rétrodiffusion a été effectuée. Des relations linéaires fortes ont été observées uniquement durant la phase exponentielle. Une reconstruction du coefficient de rétrodiffusion a permis de mettre en évidence que le POC était d'origine phytoplanctonique pour une espèce et d'origine bactérienne pour l'autre. / The objective was to use the flow cytometer (Cytosense, CityBuoy B.V., NL) to understand the influence of structural and morphological parameters of phytoplankton cells on the backscattering. We have analyzed the optical properties of the cells over different growth phases. A microcosm experiment was performed on two species (Thalassiosira pseudonana and Chlamydomonas Concordia) during 20 days. The forward and sideward efficiencies of Thalassiosira pseudonana were, respectively, 2.2 and 1.6 times higher than the efficiencies Chlamydomonas Concordia. The inter- and intra-species variations were explained by theoretical simulations and in situ measurements (biogeochemical and observations from scanning electron microscope). In situ measurements were used to obtain informations about the cell structure (e.g. thickness of the frustule). The forward efficiency was impacted by the aggregation and the cell size. The real refractive index of the chloroplast is a key parameter that could explain variations of the sideward efficiency. In the future, we recommend to use a two-layered sphere model (cytoplasm-chloroplast) to simulate the optical properties of phytoplankton cells. An analysis of the relationship between the particulate organic carbon concentration (POC) and the backscattering coefficient was performed. Strong linear relationships were observed only during the exponential phase. A reconstruction of the backscattering coefficient permitted to highlight that the POC was from phytoplankton cells origin for a species and bacterial origin for the other one.
|
3 |
Core-Shell Based Metamaterials: Fabrication Protocol and Optical PropertiesDe Silva, Vashista C. 12 1900 (has links)
The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports our experiments and indicates that light goes mostly through the epsilon-near-zero shell with approximately wavelength independent absorption rate. Broadband extinction in fractal shells allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. Au fractal nanostructures grown on PCC flakes provide the highest mass normalized extinction, up to 3 m^2/g, which has been demonstrated in the broad spectral range. In the nanoplasmonic field active devices consist of a Au nanoparticle that acts as a cavity and the dye molecules attached to it via thin silica shell as the active medium. Such kind of devices is considered as a nano-laser or nano-amplifier. The fabricated nanolasers were studied for their photoluminescence kinetic properties. It is shown that the cooperative effects due to the coupling of dye molecules via Au nanoparticle plasmons result in bi-exponential emission decay characteristics in accord with theory predictions. These bi-exponential decays involve a fast superradiant decay, which is followed by a slow subradiant decay. To summarize, this work shows new attractive properties of core-shell nanoparticles. Fractal Au shells on silica cores prove to be a good scattering suppressor and a band pass filter in a broadband spectral range. They can also be used as an obscurant when PCC is used as the core material. Finally, gold nanoparticles coated with silica with dye results in bi-exponential decays.
|
Page generated in 0.1295 seconds