• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 1
  • Tagged with
  • 52
  • 38
  • 33
  • 30
  • 19
  • 15
  • 14
  • 13
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Multisensor Microwave Remote Sensing in the Cryosphere

Remund, Quinn P. 14 May 2003 (has links) (PDF)
Because the earth's cryosphere influences global weather patterns and climate, the scientific community has had great interest in monitoring this important region. Microwave remote sensing has proven to be a useful tool in estimating sea and glacial ice surface characteristics with both scatterometers and radiometers exhibiting high sensitivity to important ice properties. This dissertation presents an array of studies focused on extracting key surface features from multisensor microwave data sets. First, several enhanced resolution image reconstruction issues are addressed. Among these are the optimization of the scatterometer image reconstruction (SIR) algorithm for NASA scatterometer (NSCAT) data, an analysis of Ku-band azimuthal modulation in Antarctica, and inter-sensor European Remote Sensing Satellite (ERS) calibration. Next, various methods for the removal of atmospheric distortions in image reconstruction of passive radiometer observations are considered. An automated algorithm is proposed which determines the spatial extent of sea ice in the Arctic and Antarctic regions from NSCAT data. A multisensor iterative sea ice statistical classification method which adapts to the temporally varying signatures of ice types is developed. The sea ice extent and classification algorithms are adopted for current SeaWinds scatterometer data sets. Finally, the automated inversion of large-scale forward electromagnetic scattering of models is considered and used to study the temporal evolution of the scattering properties of polar sea ice.
52

Wind Scatterometry with Improved Ambiguity Selection and Rain Modeling

Draper, David W. 23 December 2003 (has links) (PDF)
Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributers to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events. Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach produces generally more consistent wind than the nudging method in moderate wind conditions. The non-nudging method selects 93% of the same ambiguities as the nudged data, validating both techniques, and indicating that ambiguity selection can be accomplished without nudging. Variability at low wind speeds is analyzed using tower-mounted scatterometer data. According to theory, below a threshold wind speed, the wind fails to generate the surface roughness necessary for wind measurement. A simple analysis suggests the existence of the threshold in much of the tower-mounted scatterometer data. However, the backscatter does not "go to zero" beneath the threshold in an uncontrolled environment as theory suggests, but rather has a mean drop and higher variability below the threshold. Rain is the largest weather-related contributer to scatterometer error, affecting approximately 4% to 10% of SeaWinds data. A simple model formed via comparison of co-located TRMM PR and SeaWinds measurements characterizes the average effect of rain on SeaWinds backscatter. The model is generally accurate to within 3 dB over the tropics. The rain/wind backscatter model is used to simultaneously retrieve wind and rain from SeaWinds measurements. The simultaneous wind/rain (SWR) estimation procedure can improve wind estimates during rain, while providing a scatterometer-based rain rate estimate. SWR also affords improved rain flagging for low to moderate rain rates. QuikSCAT-retrieved rain rates correlate well with TRMM PR instantaneous measurements and TMI monthly rain averages. SeaWinds rain measurements can be used to supplement data from other rain-measuring instruments, filling spatial and temporal gaps in coverage.

Page generated in 0.0519 seconds