• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théorèmes limites pour estimateurs Multilevel avec et sans poids. Comparaisons et applications / Limit theorems for Multilevel estimators with and without weights. Comparisons and applications

Giorgi, Daphné 02 June 2017 (has links)
Dans ce travail, nous nous intéressons aux estimateurs Multilevel Monte Carlo. Ces estimateurs vont apparaître sous leur forme standard, avec des poids et dans une forme randomisée. Nous allons rappeler leurs définitions et les résultats existants concernant ces estimateurs en termes de minimisation du coût de simulation. Nous allons ensuite montrer une loi forte des grands nombres et un théorème central limite. Après cela nous allons étudier deux cadres d'applications. Le premier est celui des diffusions avec schémas de discrétisation antithétiques, où nous allons étendre les estimateurs Multilevel aux estimateurs Multilevel avec poids. Le deuxième est le cadre nested, où nous allons nous concentrer sur les hypothèses d'erreur forte et faible. Nous allons conclure par l'implémentation de la forme randomisée des estimateurs Multilevel, en la comparant aux estimateurs Multilevel avec et sans poids. / In this work, we will focus on the Multilevel Monte Carlo estimators. These estimators will appear in their standard form, with weights and in their randomized form. We will recall the previous existing results concerning these estimators, in terms of minimization of the simulation cost. We will then show a strong law of large numbers and a central limit theorem.After that, we will focus on two application frameworks.The first one is the diffusions framework with antithetic discretization schemes, where we will extend the Multilevel estimators to Multilevel estimators with weights, and the second is the nested framework, where we will analyze the weak and the strong error assumptions. We will conclude by implementing the randomized form of the Multilevel estimators, comparing this to the Multilevel estimators with and without weights.
2

Étude et modélisation des équations différentielles stochastiques / High weak order discretization schemes for stochastic differential equation

Rey, Clément 04 December 2015 (has links)
Durant les dernières décennies, l'essor des moyens technologiques et particulièrement informatiques a permis l'émergence de la mise en œuvre de méthodes numériques pour l'approximation d'Equations Différentielles Stochastiques (EDS) ainsi que pour l'estimation de leurs paramètres. Cette thèse aborde ces deux aspects et s'intéresse plus spécifiquement à l'efficacité de ces méthodes. La première partie sera consacrée à l'approximation d'EDS par schéma numérique tandis que la deuxième partie traite l'estimation de paramètres. Dans un premier temps, nous étudions des schémas d'approximation pour les EDSs. On suppose que ces schémas sont définis sur une grille de temps de taille $n$. On dira que le schéma $X^n$ converge faiblement vers la diffusion $X$ avec ordre $h in mathbb{N}$ si pour tout $T>0$, $vert mathbb{E}[f(X_T)-f(X_T^n)] vertleqslant C_f /n^h$. Jusqu'à maintenant, sauf dans certains cas particulier (schémas d'Euler et de Ninomiya Victoir), les recherches sur le sujet imposent que $C_f$ dépende de la norme infini de $f$ mais aussi de ses dérivées. En d'autres termes $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Notre objectif est de montrer que si le schéma converge faiblement avec ordre $h$ pour un tel $C_f$, alors, sous des hypothèses de non dégénérescence et de régularité des coefficients, on peut obtenir le même résultat avec $C_f=C Vert f Vert_{infty}$. Ainsi, on prouve qu'il est possible d'estimer $mathbb{E}[f(X_T)]$ pour $f$ mesurable et bornée. On dit alors que le schéma converge en variation totale vers la diffusion avec ordre $h$. On prouve aussi qu'il est possible d'approximer la densité de $X_T$ et ses dérivées par celle $X_T^n$. Afin d'obtenir ce résultat, nous emploierons une méthode de calcul de Malliavin adaptatif basée sur les variables aléatoires utilisées dans le schéma. L'intérêt de notre approche repose sur le fait que l'on ne traite pas le cas d'un schéma particulier. Ainsi notre résultat s'applique aussi bien aux schémas d'Euler ($h=1$) que de Ninomiya Victoir ($h=2$) mais aussi à un ensemble générique de schémas. De plus les variables aléatoires utilisées dans le schéma n'ont pas de lois de probabilité imposées mais appartiennent à un ensemble de lois ce qui conduit à considérer notre résultat comme un principe d'invariance. On illustrera également ce résultat dans le cas d'un schéma d'ordre 3 pour les EDSs unidimensionnelles. La deuxième partie de cette thèse traite le sujet de l'estimation des paramètres d'une EDS. Ici, on va se placer dans le cas particulier de l'Estimateur du Maximum de Vraisemblance (EMV) des paramètres qui apparaissent dans le modèle matriciel de Wishart. Ce processus est la version multi-dimensionnelle du processus de Cox Ingersoll Ross (CIR) et a pour particularité la présence de la fonction racine carrée dans le coefficient de diffusion. Ainsi ce modèle permet de généraliser le modèle d'Heston au cas d'une covariance locale. Dans cette thèse nous construisons l'EMV des paramètres du Wishart. On donne également la vitesse de convergence et la loi limite pour le cas ergodique ainsi que pour certains cas non ergodiques. Afin de prouver ces convergences, nous emploierons diverses méthodes, en l'occurrence : les théorèmes ergodiques, des méthodes de changement de temps, ou l'étude de la transformée de Laplace jointe du Wishart et de sa moyenne. De plus, dans dernière cette étude, on étend le domaine de définition de cette transformée jointe / The development of technology and computer science in the last decades, has led the emergence of numerical methods for the approximation of Stochastic Differential Equations (SDE) and for the estimation of their parameters. This thesis treats both of these two aspects. In particular, we study the effectiveness of those methods. The first part will be devoted to SDE's approximation by numerical schemes while the second part will deal with the estimation of the parameters of the Wishart process. First, we focus on approximation schemes for SDE's. We will treat schemes which are defined on a time grid with size $n$. We say that the scheme $ X^n $ converges weakly to the diffusion $ X $, with order $ h in mathbb{N} $, if for every $ T> 0 $, $ vert mathbb{E} [f (X_T) -f (X_T^n)]vert leqslant C_f / h^n $. Until now, except in some particular cases (Euler and Victoir Ninomiya schemes), researches on this topic require that $ C_f$ depends on the supremum norm of $ f $ as well as its derivatives. In other words $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Our goal is to show that, if the scheme converges weakly with order $ h $ for such $C_f$, then, under non degeneracy and regularity assumptions, we can obtain the same result with $ C_f=C Vert f Vert_{infty}$. We are thus able to estimate $mathbb{E} [f (X_T)]$ for a bounded and measurable function $f$. We will say that the scheme converges for the total variation distance, with rate $h$. We will also prove that the density of $X^n_T$ and its derivatives converge toward the ones of $X_T$. The proof of those results relies on a variant of the Malliavin calculus based on the noise of the random variable involved in the scheme. The great benefit of our approach is that it does not treat the case of a particular scheme and it can be used for many schemes. For instance, our result applies to both Euler $(h = 1)$ and Ninomiya Victoir $(h = 2)$ schemes. Furthermore, the random variables used in this set of schemes do not have a particular distribution law but belong to a set of laws. This leads to consider our result as an invariance principle as well. Finally, we will also illustrate this result for a third weak order scheme for one dimensional SDE's. The second part of this thesis deals with the topic of SDE's parameter estimation. More particularly, we will study the Maximum Likelihood Estimator (MLE) of the parameters that appear in the matrix model of Wishart. This process is the multi-dimensional version of the Cox Ingersoll Ross (CIR) process. Its specificity relies on the square root term which appears in the diffusion coefficient. Using those processes, it is possible to generalize the Heston model for the case of a local covariance. This thesis provides the calculation of the EMV of the parameters of the Wishart process. It also gives the speed of convergence and the limit laws for the ergodic cases and for some non-ergodic case. In order to obtain those results, we will use various methods, namely: the ergodic theorems, time change methods or the study of the joint Laplace transform of the Wishart process together with its average process. Moreover, in this latter study, we extend the domain of definition of this joint Laplace transform

Page generated in 0.0865 seconds