Spelling suggestions: "subject:"achema matching"" "subject:"dechema matching""
21 |
Multi-Network integration for an Intelligent Mobility / Intégration multi-réseaux pour la mobilité intelligenteMasri, Ali 28 November 2017 (has links)
Les systèmes de transport sont un des leviers puissants du progrès de toute société. Récemment les modes de déplacement ont évolué significativement et se diversifient. Les distances quotidiennement parcourues par les citoyens ne cessent d'augmenter au cours de ces dernières années. Cette évolution impacte l'attractivité et la compétitivité mais aussi la qualité de vie grandement dépendante de l'évolution des mobilités des personnes et des marchandises. Les gouvernements et les collectivités territoriales développent de plus en plus des politiques d'incitation à l'éco-mobilité. Dans cette thèse nous nous concentrons sur les systèmes de transport public. Ces derniers évoluent continuellement et offrent de nouveaux services couvrant différents modes de transport pour répondre à tous les besoins des usagers. Outre les systèmes de transports en commun, prévus pour le transport de masse, de nouveaux services de mobilité ont vu le jour, tels que le transport à la demande, le covoiturage planifié ou dynamique et l'autopartage ou les vélos en libre-service. Ils offrent des solutions alternatives de mobilité et pourraient être complémentaires aux services traditionnels. Cepandant, ces services sont à l'heure actuelle isolés du reste des modes de transport et des solutions multimodales. Ils sont proposés comme une alternative mais sans intégration réelle aux plans proposés par les outils existants. Pour permettre la multimodalité, le principal challenge de cette thèse est l'intégration de données et/ou de services provenant de systèmes de transports hétérogènes. Par ailleurs, le concept de données ouvertes est aujourd'hui adopté par de nombreuses organisations publiques et privées, leur permettant de publier leurs sources de données sur le Web et de gagner ainsi en visibilité. On se place dans le contexte des données ouvertes et des méthodes et outils du web sémantique pour réaliser cette intégration, en offrant une vue unifiée des réseaux et des services de transport. Les verrous scientifiques auxquels s'intéresse cette thèse sont liés aux problèmes d'intégration à la fois des données et des services informatiques des systèmes de transport sous-jacents. / Multimodality requires the integration of heterogeneous transportation data and services to construct a broad view of the transportation network. Many new transportation services (e.g. ridesharing, car-sharing, bike-sharing) are emerging and gaining a lot of popularity since in some cases they provide better trip solutions.However, these services are still isolated from the existing multimodal solutions and are proposed as alternative plans without being really integrated in the suggested plans. The concept of open data is raising and being adopted by many companies where they publish their data sources to the web in order to gain visibility. The goal of this thesis is to use these data to enable multimodality by constructing an extended transportation network that links these new services to existing ones.The challenges we face mainly arise from the integration problem in both transportation services and transportation data
|
22 |
A Study on Machine Learning Techniques for the Schema Matching Networks Problem / Um Estudo de Técnicas de Aprendizagem de Máquina para o Problema de Casamento de Esquemas em RedeRodrigues, Diego de Azevedo, 981997982 22 October 2018 (has links)
Submitted by Diego Rodrigues (diego.rodrigues@icomp.ufam.edu.br) on 2018-12-07T21:38:02Z
No. of bitstreams: 2
Diego Rodrigues.pdf: 3673641 bytes, checksum: f1fdd4162dc6acd590136bb6b886704e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Secretaria PPGI (secretariappgi@icomp.ufam.edu.br) on 2018-12-07T22:27:06Z (GMT) No. of bitstreams: 2
Diego Rodrigues.pdf: 3673641 bytes, checksum: f1fdd4162dc6acd590136bb6b886704e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-12-10T19:02:56Z (GMT) No. of bitstreams: 2
Diego Rodrigues.pdf: 3673641 bytes, checksum: f1fdd4162dc6acd590136bb6b886704e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-12-10T19:02:56Z (GMT). No. of bitstreams: 2
Diego Rodrigues.pdf: 3673641 bytes, checksum: f1fdd4162dc6acd590136bb6b886704e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-10-22 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Schema Matching is the problem of finding semantic correspondences between elements from different schemas. This is a challenging problem, since the same concept is often represented by disparate elements in the schemas. The traditional instances of this problem involved a pair of schemas to be matched. However, recently there has been a increasing interest in matching several related schemas at once, a problem known as Schema Matching Networks, where the goal is to identify elements from several schemas that correspond to a single concept. We propose a family of methods for schema matching networks based on machine learning, which proved to be a competitive alternative for the traditional matching problem in several domains. To overcome the issue of requiring a large amount of training data, we also propose a bootstrapping procedure to automatically generate training data. In addition, we leverage constraints that arise in network scenarios to improve the quality of this data. We also propose a strategy for receiving user feedback to assert some of the matchings generated, and, relying on this feedback, improving the quality of the final result. Our experiments show that our methods can outperform baselines reaching F1-score up to 0.83. / Casamento de Esquemas é a tarefa de encontrar correpondências entre elementos de diferentes esquemas de bancos de dados. É um problema desafiador, uma vez que o mesmo conceito geralmente é representado de maneiras distintas nos esquemas.Tradicionalmente, a tarefa envolve um par de esquemas a serem mapeados. Entretanto, houve um crescimento na necessidade de mapear vários esquemas ao mesmo tempo, tarefa conhecida como Casamento de Esquemas em Rede, onde o objetivo é identificar elementos de vários esquemas que correspondem ao mesmo conceito. Este trabalho propõe uma famı́lia de métodos para o problema do casamento de esquemas em rede baseados em aprendizagem de máquina, que provou ser uma alternativa viável para o problema do casamento tradicional em diversos domı́nios. Para superar obstáculo de obter bastantes instâncias de treino, também é proposta uma técnica de bootstrapping para gerar treino automático. Além disso, o trabalho considera restrições de integridade que ajudam a nortear
o processo de casamento em rede. Este trabalho também propõe uma estratégia para receber avaliações do usuário, com o propósito de melhorar o resultado final. Experimentos mostram que o método proposto supera outros métodos comparados alcançando valor F1 até 0.83 e sem utilizar muitas avaliações do usuário.
|
Page generated in 0.0761 seconds