• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inferring information about correspondences between data sources for dataspaces

Guo, Chenjuan January 2011 (has links)
Traditional data integration offers high quality services for managing and querying interrelated but heterogeneous data sources but at a high cost. This is because a significant amount of manual effort is required to help specify precise relationships between the data sources in order to set up a data integration system. The recent proposed vision of dataspaces aims to reduce the upfront effort required to set up the system. A possible solution to approaching this aim is to infer schematic correspondences between the data sources, thus enabling the development of automated means for bootstrapping dataspaces. In this thesis, we discuss a two-step research programme to automatically infer schematic correspondences between data sources. In the first step, we investigate the effectiveness of existing schema matching approaches for inferring schematic correspondences and contribute a benchmark, called MatchBench, to achieve this aim. In the second step, we contribute an evolutionary search method to identify the set of entity-level relationships (ELRs) between data sources that qualify as entity-level schematic correspondences. Specifically, we model the requirements using a vector space model. For each resulting ELR we further identify a set of attribute-level relationships (ALRs) that qualify as attribute-level schematic correspondences. We demonstrate the effectiveness of the contributed inference technique using both MatchBench scenarios and real world scenarios.

Page generated in 0.1119 seconds