• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Leverrierite as a schist-forming mineral

Corbett, Clifton Sherwin. January 1900 (has links)
Presented as Thesis (Ph. D.)--University of Wisconsin--Madison, 1921. / Cover title. Reprinted from American journal of science, vol. X (Sept. 1925). Includes bibliographical references.
2

KINEMATIC SIGNIFICANCE OF MYLONITIC FOLIATION (METAMORPHIC).

NARUK, STEPHEN JOHN. January 1987 (has links)
Geometric analyses of three mylonite zones, including two metamorphic-core-complex SC-mylonite zones, show that the mylonitic foliation surfaces (S-surfaces) are consistently discordant to the margins of the shear zones. Finite-strain analyses show that the foliation surfaces in each zone are consistently oriented parallel to the XY-plane of the finite strain ellipsoid. The shear bands within the mylonites (C-surfaces, C'-surfaces, extensional crenulations, and shear-band cleavages) are uniformly oriented subparallel to the margins of the shear zones. The finite lengths and discontinuous natures of the shear bands require that the displacement along them be accommodated by the S-surfaces at the tips of the shear bands. Thus the S-surface elongations and orientations represent the total bulk rock strain, rather than some minimum measure of inter-C-surface strain. General stress and strain considerations indicate that the shear bands are planes of maximum shear stress, and that they are not only simple-shear slip planes. This interpretation implies that in simple-shear deformation, a single, irrotational set of shear bands will develop parallel to the shear-zone boundaries. In deformations involving significant components of coaxial strain, however, shear bands may develop in other orientations or in conjugate sets and rotate with progressive deformation.
3

Structural, metamorphic and geochronologic constraints on the origin of the Condrey Mountain schist, north central Klamath Mountains, northern California

Helper, Mark Alan 14 July 2011 (has links)
The Condrey Mountain Schist (CMS) occupies a window through Late Triassic amphibolite facies melange in the north central Klamath Mountains in northern California and southwest Oregon. The schists owe their present level of exposure to a large structural dome centered on the Condrey Mountain Window. Transitional blueschist-greenschist facies assemblages are widespread in mafic schists in the structurally lowest levels of the window; structurally higher CMS near the window margins contains medium- to high-pressure greenschist facies parageneses. An ⁴⁰Ar/³⁹Ar crossite age indicates a late Middle Jurassic age of metamorphism. All subunits of the CMS contain evidence of progressive, polyphase deformational and metamorphic histories. The styles and geometries of minor structures in the central part of the window suggest that early folding and transposition was the result of noncoaxial deformation, and that rotational strains were replaced by irrotational flattening strains with time. Rotational strains were accompanied by the development of epidote-crossite assemblages and the growth of deerite in meta-ironstones; irrotational flattening strains were accompanied and followed by the growth of albite, actinolite, spessartine, and the Ba-silicate, cymrite. Pressure-temperature estimates, the relative ages of mineral growth and deformation, and strain geometries are consistent with, but not restricted to, a subduction zone environment. High shear strains may reflect descent and burial, whereas flattening and late, static mineral growth occur during uplift. Pressure-temperature estimates for the overlying CMS greenschists suggest temperatures similar to those in the central part of the window, but at slightly lower pressures. Thrusting of the overlying amphibolites at 150-156 Ma occurred while the amphibolites were above about 500°C. Stretching lineations indicate a movement vector of about N45W. Comparisons of the sequence and timing of metamorphic and structural events, radiometric ages, and movement directions during thrusting indicate the CMS does not represent an inlier of Klamath Western Jurassic Belt flysch but is instead an older, isolated thrust plate. Similarities with the age of metamorphism and plutonism in the overlying amphibolites suggest the two plates may be remnants of the same Middle Jurassic paired metamorphic belt. / text

Page generated in 0.0581 seconds