• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 28
  • 12
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 129
  • 27
  • 21
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Promoter-driven splicing regulation in fission yeast

Moldón Vara, Alberto 17 October 2008 (has links)
The meiotic cell cycle is modified from the mitotic cell cycle by having a premeiotic S phase which leads to high levels of recombination, two rounds of nuclear division with no intervening DNA synthesis, and a reductional pattern of chromosome segregation. Rem1 is a cyclin that is expressed only during meiosis in the fission yeast Schizosaccharomyces pombe. Cells in which rem1 has been deleted show a decreased intragenic meiotic recombination and a delay at the onset of meiosis I. When ectopically expressed in mitotically growing cells, Rem1 induces a G1 arrest followed by severe mitotic catastrophes. Here we show that rem1 expression is regulated at the level of both transcription and splicing, encoding for two proteins with different function depending on the intron retention. We have determined that the regulation of rem1 splicing is not dependent on any transcribed region of the gene. Furthermore, when the rem1 promoter is fused to other intron-containing genes, the chimeras show a meiotic-specific regulation of splicing, exactly as endogenous rem1. This regulation is dependent on two transcription factors of the forkhead family, Mei4 and Fkh2. While Mei4 induces both transcription and splicing of rem1, Fkh2 is responsible for the intron retention of the transcript during vegetative growth and pre-meiotic S phase. / El ciclo meiótico se diferencia del ciclo mitótico por tener una fase S pre-meiótica caracterizada por altos niveles de recombinación, dos rondas de división nuclear sin síntesis de DNA entre las dos y una segregación cromosómica reduccional. Rem1 es una ciclina que sólo se expresa en meiosis en la levadura de fisión Schizosaccharomyces pombe. Celulas con rem1 deleccionado presentan una tasa de recombinación intragénica disminuida y un retraso en el inicio de meiosis I. Cuando se expresa ectópicamente en células creciendo vegetativamente, Rem1 induce un arresto en G1 seguido de catástrofe mitótica. Este trabajo describe que la expresión de rem1 está regulada a nivel de la trascripción y el procesamiento, codificando para dos proteínas con funciones diferentes dependiendo de la retención intrónica.. Hemos determinado que la regulación del splicing de rem1 no depende de ninguna región transcrita del gen. Además, cuando el promotor se fusiona a otros genes que contienen intrones, las quimeras presentan una regulación específica de meiosis como el rem1 endógeno. Esta regulación depende de dos factores de transcripción de la familia Forkhead, Mei4 y Fkh2. Mientras Mei4 induce la transcripción y el splicing de rem1, Fkh2 es responsable de la retención intrónica del tránscrito durante crecimiento vegetativo y fase S pre-meiótica.
82

Vlastnosti DNA vazebných mutant proteinů CSL / Vlastnosti DNA vazebných mutant proteinů CSL

Teska, Mikoláš January 2012 (has links)
Notch pathway plays a critical role during the development and life of metazoan organisms. CSL proteins are the component of the Notch pathway that mediates the regulation of target genes. The discovery of CSL-like proteins in yeast raised the question of their function in unicellular organisms which did not utilize the canonical Notch pathway. CSL-homologues in yeast are conserved in parts that are important for DNA binding and for fission yeast proteins it was shown that they bind to CSL recognition elements in vitro. In fission yeast, CSL paralogues Cbf11 and Cbf12 play antagonistic roles in cell adhesion and the coordination of cell and nuclear division. Yeast CSL proteins have long and intrinsically unstructured N- terminal domains compared to metazoan CSL proteins. In this study, we investigated the functional significance of these extended N-termini of CSL proteins by their complete removal. For newly constructed truncated variants of proteins Cbf11 and Cbf12 in Schizosaccharomyces pombe we observed the lack of ability to bind CSL recognition RBP probe. The removal of N-terminal parts of CSL proteins in fission yeast led to the change in their cellular localization. Once strongly preferred nuclear localization changed by the removal of N-terminal domains to cytoplasmic localization with a...
83

Biologický význam fosforylace tyrosinu 90 v SH3 doméně kinázy Src / Biological relevance of the tyrosine 90 phosphorylation in SH3 domain Src kinase

Koudelková, Lenka January 2013 (has links)
Kinase Src plays an essential role in signal transduction from activated surface receptors. Src is involved in signal pathways that participate in the control of cell proliferation, differentiation or motility. That is why Src activation undergoes strict and complex regulation. Inactive conformation is maintained by intramolecular inhibitory interactions. SH3 domain associates with a polyprolin helix in CD linker whereas SH2 domain binds phosphorylated C-terminal tyrosine 527. Both regulatory domains maintain contacts with the lobes of a kinase domain thereby stabilizing an inactive conformation of the catalytic domain. Transition to an active state is accompanied by a disruption of these inhibitory interactions. Conformation changes are substantially influenced by the phosphorylation status of key tyrosines 416 and 527. Phosphoproteomic analysis revealed new Src tyrosine residue, which can be phosphorylated in vivo. It has been found, that tyrosine works as an additional regulator of Src activity. This is Tyr 90, which forms one of the hydrophobic pockets in the binding surface of Src SH3 domain. Based on the expression of phosphomimic mutant Src 90E in S. pombe or in SYF lineage, it has been observed, that Tyr 90 phosphorylation elevates Src kinase activity. The reason is that the phosphate...
84

Characterization of two domains of Schizosaccharomyces pombe adenylate cyclase

Baum, Kristen Michelle January 2005 (has links)
Thesis advisor: Charles S. Hoffman / Glucose detection in yeast occurs via a cAMP signaling pathway that is similar to that of other signaling pathways in humans. The presence of glucose in the environment ultimately represses, as a result of cAMP signaling, the transcription of the gene fbp1. Adenylate cyclase is known to convert ATP to cAMP, and is thus a central protein in the propagation of the signal. Mutant forms of the adenylate cyclase gene (git2) have been found by the inability for the organism to repress fbp1 transcription in the presence of glucose. In this study, two questions were under investigation. The first was focused on the ability of the mutations to affect the dimerization of the catalytic domain. The second investigated multiple protein-protein interactions in the leucine rich-repeat (LRR) domain of adenylate cyclase. Both domains contain mutations that confer an activation defect, and they are thus are thought to have a relationship. / Thesis (BS) — Boston College, 2005. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Biology. / Discipline: College Honors Program.
85

Functions of the Cdc14-Family Phosphatase Clp1p in the Cell Cycle Regulation of <em>Schizosaccharomyces pombe</em>: A Dissertation

Trautmann, Susanne 20 May 2005 (has links)
In order to generate healthy daughter cells, nuclear division and cytokinesis need to be coordinated. Premature division of the cytoplasm in the absence of chromosome segregation or nuclear proliferation without cytokinesis might lead to aneuploidy and cancer. The cyclin dependent kinases, CDKs, are a main regulator of the cell cycle. Timely increase and decrease in their activity is required for cell cycle progression. To enter mitosis, mitotic CDK activity needs to rise. CDK activity stays elevated until chromosome segregation is completed and exit from mitosis requires decrease in CDK activity. Observations in several experimental systems suggest that coordination of cytokinesis with the nuclear cycle is regulated through CDK activity. Prolonged high CDK activity, as it occurs when chromosome segregation is delayed, was found to oppose cytokinesis. Prevention of cytokinesis through high CDK activity may therefore provide a mechanism to prevent precocious cell division in the absence of chromosome segregation. To prevent polyploidy when cell division is delayed, progression through the next nuclear cycle should be inhibited until cytokinesis is completed, presumably by the inhibition of CDK activity. In the fission yeast Schizosaccharomyces pombe, a signaling cascade called Septation Initiation Network (SIN) is required for the coordination of cytokinesis with the nuclear cycle. The SIN is essential for cytokinesis, triggering the execution of cell division through constriction of the actomyosin ring. The activation of the SIN signaling cascade, and thus cytokinesis, is opposed by high CDK activity, preventing precocious cytokinesis. S. pombe delay entry into the next nuclear division in response to delayed cytokinesis due to defects in the contractile ring until cytokinesis is completed thereby preventing the accumulation of multinucleate, non viable cells. This safeguard against multinucleate cells is termed the cytokinesis checkpoint. The cytokinesis checkpoint keeps CDK activity low, preventing nuclear cycle progression. The SIN is required for the cytokinesis checkpoint and therefore is a key coordinator between nuclear cycle and cytokinesis. How the SIN functions in the cytokinesis checkpoint was not known. Cdc14-family phosphatases are highly conserved from yeast to humans, but were only characterized in Saccharomyces cerevisiae at the time this thesis was initiated. Cdc14 had been identified as the effector of a signaling cascade homologous to the SIN, called the mitotic exit network (MEN), which is required for exit from mitosis. This thesis describes the identification of the S. pombe Cdc14-like phosphatase Clp1p as a component of the cytokinesis checkpoint. Clp1p opposes CDK activity, and Clp1p and the SIN activate each other in a positive feedback loop. This maintains an active cytokinesis checkpoint and delays mitotic entry. We further found that Clp1p regulates chromosome segregation. Concluding, this thesis describes discoveries adding to the characterization of the cytokinesis checkpoint and the function of Clp1p. While others found that Cdc14-family phosphatases, including Clp1p, have similar catalytic functions, we show that their biological function may be quite different between organisms, possibly due to different biological challenges.
86

Molecular mechanisms of Tea1 cortical anchoring in Schizosaccharomyces pombe

Bicho, Cláudia do Céu Afonso January 2010 (has links)
Establishment and maintenacne of a polarized axis is essential for all organisms. Cells can either change their shape in response to extracellular cues or maintain a stable polarity axis via landmarks defined in relation to internal cues. In the fission yeast Schizosaccharomyces pombe,microtubules regulate cortical cell polarity together with the landmark protein Tea1. Tea1 is transported to cell tips on microtubule plus-­‐ends and deposited upon microtubule contact with the membrane. Although Tea1 has been shown to interact with several binding-­partners, Tea1 anchoring at the cell tip depends mostly on the membrane-­associated protein, Mod5. Tea1 and Mod5 accumulate in clusters at the cell tip in a mutually dependent manner. I used a combination of live-­‐cell imaging, FRAP (Fluorescence Recovery After Photobleaching) and computational modeling to dissect the dynamics of the Tea1-­‐Mod5 interaction. I have shown that although Tea1 is stably associated with the cell tip, Mod5 is mobile within the cell tip. I proposed a model in which Tea1 is stable at the cell tip due to self-­‐polymerization and association in the form of a cluster-­‐network. In the model, the role of Mod5 in the cluster-­‐network is to facilitate the formation of Tea1-­‐Tea1 interactions. Moreover, in the model, Mod5 is restricted to the cell tip due to iterative binding to and release from the Tea1 cluster-­‐network. The properties of the proposed Tea1 cluster-­‐ network might contribute to the behavior of Tea1 as a polarity landmark. I hypothesized that Tea1 transfer from the microtubules to the cell tip was regulated by phosphorylation. Tea1 phosphorylated residues were mapped using mass spectroscopy (MS), and identified to be mostly enriched within a central region of the protein. Using a combination of mutagenic analysis and live-­‐cell imaging I demonstrate that Tea1 phosphorylation might be required for its dissociation from the cluster-­‐network at the cell tip. This suggests that Tea1 interactions within the cluster network are phospho-­‐regulated by one of the several tip-­‐localized kinases. It has been shown in other organisms and in this thesis that comparison among MS samples requires quantitative MS methodologies. Thus, I developed a robust SILAC (Stable Isotope Labeling in Cell Culture) method to perform quantitative MS in S. pombe. As a proof-­‐of-­‐principle of the method I performed a proteome-­‐wide comparison between the late G2 and the G1/S transition of the cell cycle. The cell cycle proteome-­‐wide analysis not only quantified variation in expression levels of cell cycle regulated proteins but also identified novel cell cycle regulated proteins. It has been previously shown that Tea1, Tea3 and Mod5 can interact simultaneously, with each pair interacting independently of the third protein. I describe here a Mod5 mutagenic analysis screen designed to separate Tea1 and Tea3 binding site on Mod5. The Mod5-­‐mutants obtained from this analysis indicate that the Tea3-­‐Mod5 interaction may play a role in cell polarity establishment. Moreover, although Tea3 is non-­‐essential for the cluster-­‐network formation, Tea3 might be important for its compaction, which may be particularly important during de novo formation of cell polarity.
87

Study of a novel evolutionarily conserved pattern of histone acetylation

Rajan, Roshan Elizabeth 12 1900 (has links)
No description available.
88

Caractérisation moléculaire et fonctionnelle de Cif1p, une protéine orpheline impliquée dans le phénomène épigénétique de viabilité de la levure S. pombe en absence de la chaperone calnexine.

Beauregard, Pascale B. 01 1900 (has links)
Le repliement des protéines est un processus cellulaire crucial impliquant plusieurs protéines dont la calnexine, une chaperone du réticulum endoplasmique. Notre laboratoire et un autre groupe avons démontré que la calnexine est essentielle à la viabilité de la levure Schizosaccharomyces pombe. Dans le cadre d’études structure-fonction portant sur cette protéine, nous avons découvert un phénomène permettant la viabilité des cellules en absence de la calnexine. Cet état, nommé Cin pour calnexine independence, est induit par un mutant de la calnexine dépourvu du domaine central hautement conservé (Δhcd_Cnx1p). La caractérisation de l’état Cin a révélé plusieurs caractéristiques particulières telle la dominance, sa transmission de façon non-Mendélienne à la progéniture méïotique et sa transmission par des extraits protéiques dépourvus d’acides nucléiques. Toutes ces propriétés suggèrent donc que l’état Cin est médié via un élément de type prion. Le gène cif1+, pour calnexin independence factor, a été isolé lors de criblages visant à identifier des gènes impliqués dans l’état Cin. Il encode pour une protéine orpheline dont la surexpression induit de façon stable un état de viabilité en l’absence de la calnexine. Cet état diffère génétiquement et phénotypiquement de l’état Cin induit par le mutant Δhcd_Cnx1p préalablement caractérisé, ce qui suggère deux voies parallèles de signalisation du phénomène Cin. Une caractérisation exhaustive de Cif1p a permis de démontrer qu’il ne s’agissait pas du prion responsable de l’état Cin, malgré que cette protéine possède certaines propriétés typiques des prions in vitro. Finalement, Cif1p est une protéine nucléolaire dont la bonne localisation est essentielle à sa capacité à induire l’état Cin. Ceci suggère une interaction entre la fonction essentielle de la calnexine et une fonction exécutée dans le nucléole. Lors d’études visant à élucider la fonction cellulaire de Cif1p, il a été établi qu’elle interagissait avec certaines protéines de la grosse sous-unité du ribosome telle la protéine L3. Cependant, Cif1p ne co-sédimente pas avec des sous-unités ribosomales assemblées, des ribosomes ou des polysomes. De plus, des cellules contenant une délétion génomique de cif1 voient leur contenu en ribosomes perturbé lors de la phase stationnaire. Il semble donc que Cif1p joue un rôle dans la biosynthèse des ribosomes lors de la phase stationnaire. Ce rôle spécifique à cette phase de croissance coincide avec un clivage de la portion N-terminale de Cif1p, clivage qui a lieu lors de l’entrée des cellules en phase stationnaire. De plus, des études effectuées récemment dans notre laboratoire proposent que la calnexine joue un rôle important dans la signalisation de l’apoptose, et ce particulièrement en phase stationnaire. Ainsi, une voie impliquant Cif1p, sa fonction nucléolaire dans la biosynthèse des ribosomes en phase stationnaire, la calnexine et la médiation de l’apoptose semble se dessiner. D’autres travaux, notamment sur la fonction exacte de Cif1p, le rôle de son clivage et les autres composantes impliquées dans le phénomène Cin nous permettront de dessiner un portrait plus complet de cette voie cellulaire inédite. / Protein folding is a vital process that involves many proteins of the cell. One of them is calnexin, a chaperone of the endoplasmic reticulum. In the fission yeast Schizosaccharomyces pombe, calnexin is essential for survival of the cells. During structure-function studies on calnexin, our laboratory discovered a phenomenon allowing the viability of cells without this chaperone. This state, designated Cin for Calnexin INdependence, is induced by a calnexin mutant devoid of the highly conserved central domain (Δhcd_Cnx1p). Characterization of the Cin cells showed several exceptional properties such as dominance, non-Mendelian transmission and transmission via cell extracts devoid of nucleic acids of the Cin state. All these observations suggested that the Cin phenomenon is mediated via a prionic element. To identify genes implicated in the Cin state, genetic screens were performed. They led to the identification of the cif1+ gene, for calnexin independence factor. This gene encodes an orphan protein, the overexpression of which stably induces a state of viability in the absence of calnexin. Notably, this state is genetically and phenotypically distinct from the previously isolated Cin state arising from Δhcd_Cnx1p expression. This suggests the presence of two parallel pathways both able to signal the induction of the Cin phenomenon. The exhaustive characterization of Cif1p showed that it is not the prion solely responsible for the Cin state, although it displays prion-like properties in vitro. Finally, nucleolar localization of Cif1p is required to induce the Cincif1 state, thus suggesting an unexpected interaction between the vital cellular role of calnexin and a function of the nucleolus. While investigating Cif1p function in the cell, we observed that it interacts with ribosomal proteins of the large subunit, notably L3, but it does not sediment with assembled ribosomal subunits or whole ribosomes. However, cells containing a genomic deletion of cif1 also have a disrupted ribosome content during stationary phase. Altogether, these results suggest that Cif1p has a role in ribosomal biogenesis during stationary phase. This growth-phase specific role correlates with the occurence during stationary phase of a cleavage in the N-terminal part of Cif1p. Recent studies from our laboratory proposed that calnexin plays an important role in apoptosis signaling, especially in stationary phase. Thus, a pathway implicating Cif1p, its nucleolar function in ribosome biosynthesis in stationary phase, calnexin and apoptosis signaling is starting to emerge. However more studies, notably on the exact function of Cif1p, the role of its cleavage and the other proteins implicated in the Cin state will be necessary to draw the complete scheme of this unprecedented cellular pathway.
89

Role of the stress-dependent MAP kinase Sty1 and the transcription factor Atf1 in transcription regulation in fission yeast

Sansó Martínez, Miriam 02 July 2010 (has links)
In Schizosaccharomyces pombe, the MAPK pathway Sty1 is activated upon several stress situations, like osmotic and oxidative stress, stationary phase, UV radiation or heat shock. Since the modulation of gene expression is one of the main outputs of this response, we focused this Thesis work on the charactherization of the transcription regulation by the activation of the Sty1 pathway and through the transcription factors Atf1 and Pcr1. Moreover, we extend our field of interest investigating how stress–related chromatin remodelers are affecting the stress defence transcription of the cells. / En Schizosaccharomyces pombe, la vía de la MAPK Sty1 es activada ante diferentes situaciones de estrés, como son el estrés oxidativo u osmótico, fase estacionaria, radiación UV o choque de calor. Al ser la modulación de la expresión génica uno de los más importantes objetivos de esta respuesta, hemos focalizado el trabajo de esta Tesis doctoral en la caracterización de la regulación transcripcional mediada por la activación de la ruta de Sty1 y los factores de transcripción Atf1 y Pcr1. Además, hemos ampliado nuestra área de interés investigando el papel de remodeladores de cromatina relacionados con la respuesta a estrés y cómo a participan en la transcripción estrés-dependiente.
90

Functional characterisation of conserved checkpoint genes

Kanter Smoler, Gunilla. January 1998 (has links)
Th. : Göteborg : 1998. / Notes bibliogr.

Page generated in 0.0757 seconds