• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and characterization of InP Schottky barrier MOSFET with thin TiO2 gate oxide

Yang, Sheng-Hsiung 25 July 2012 (has links)
In this study, the thin titanium oxide (TiO2) film deposited on InP substrate was prepared by atomic layer deposition (ALD), which was used as gate oxide of InP Schottky barrier MOSFET. First, aluminum oxide (Al2O3) by ALD can be used as improvement in oxide of TiO2. Al2O3 of ALD has self-cleaning which can improve interface between oxide and substrate, the leakage current densities can reach 3.1 ¡Ñ 10-9 and 3.3 ¡Ñ 10-7 A/cm2. The Schottky barrier height(£XBp) of Al/InP with (NH4)2S treatment is 0.968 eV, which is higher than that of Al/InP without (NH4)2S treatment (0.806eV). The (NH4)2S solution is a moderate etchant to reduce surface oxides on InP. Therefore, Schottky barrier will not be influenced by Fermi level pinning. The electrical characteristics of Schottky barrier MOSFET with TiO2 as gate oxide were measured in this report. The drain current is 1.73£gA. The drain current increases rapidly when drain voltage is over 1V, it indicates that breakdown field of TiO2 thin film is not high enough. Due to advantages of ALD-Al2O3, such as self-cleaning ability and high breakdown field, the TiO2/Al2O3 prepared by ALD structure was used to improve the problem mentioned above. The electrical characteristics are much improved compared with a single TiO2 film, and drain current can reach 1.37 £gA. The rapid increase of drain current with the increased drain voltage is not observed. The transconductance and mobility are 4.45 ¡Ñ 10-7 S/£gm and 202.3 mm2/V-s, respectively, and a good sub-threshold behavior is obtained. Compared with other researches, we can find that Schottky barrier in on-state is higher than that of silicide sample. It indicates the InP Schottky barrier MOSFET characteristics are limited by high Schottky barrier.
2

Integration of metallic source/drain contacts in MOSFET technology

Luo, Jun January 2010 (has links)
The continuous and aggressive downscaling of conventional CMOS devices has been driving the vast growth of ICs over the last few decades. As the CMOS downscaling approaches the fundamental limits, novel device architectures such as metallic source/drain Schottky barrier MOSFET (SB-MOSFET) and SB-FinFET are probably needed to further push the ultimate downscaling. The ultimate goal of this thesis is to integrate metallic Ni1-xPtx silicide (x=0~1) source/drain into SB-MOSFET and SB-FinFET, with an emphasis on both material and processing issues related to the integration of Ni1-xPtx silicides towards competitive devices. First, the effects of both carbon (C) and nitrogen (N) on the formation and on the Schottky barrier height (SBH) of NiSi are studied. The presence of both C and N is found to improve the poor thermal stability of NiSi significantly. The present work also explores dopant segregation (DS) using B and As for the NiSi/Si contact system. The effects of C and N implantation into the Si substrate prior to the NiSi formation are examined, and it is found that the presence of C yields positive effects in helping reduce the effective SBH to 0.1-0.2 eV for both conduction polarities. In order to unveil the mechanism of SBH tuning by DS, the variation of specific contact resistivity between silicide and Si substrates by DS is monitored. The formation of a thin interfacial dipole layer at silicide/Si interface is confirmed to be the reason of SBH modification. Second, a systematic experimental study is performed for Ni1-xPtx silicide (x=0~1) films aiming at the integration into SB-MOSFET. A distinct behavior is found for the formation of Ni silicide films. Epitaxially aligned NiSi2-y films readily grow and exhibit extraordinary morphological stability up to 800 oC when the thickness of deposited Ni (tNi) <4 nm. Polycrystalline NiSi films form and tend to agglomerate at lower temperatures for thinner films for tNi≥4 nm. Such a distinct annealing behavior is absent for the formation of Pt silicide films with all thicknesses of deposited Pt. The addition of Pt into Ni supports the above observations. Surface energy is discussed as the cause responsible for the distinct behavior in phase formation and morphological stability. Finally, three different Ni-SALICIDE schemes towards a controllable NiSi-based metallic source/drain process without severe lateral encroachment of NiSi are carried out. All of them are found to be effective in controlling the lateral encroachment. Combined with DS technology, both n- and p-types of NiSi source/drain SB-MOSFETs with excellent performance are fabricated successfully. By using the reproducible sidewall transfer lithography (STL) technology developed at KTH, PtSi source/drain SB-FinFET is also realized in this thesis. With As DS, the characteristics of PtSi source/drain SB-FinFET are transformed from p-type to n-type. This thesis work places Ni1-xPtx (x=0~1) silicides SB-MOSFETs as a competitive candidate for future CMOS technology. / QC20100708 / NEMO, NANOSIL, SINANO
3

Superconducting silicon on insulator and silicide-based superconducting MOSFET for quantum technologies / SOI supraconducteur et MOSFET supraconducteur à la base de siliciure pour les technologies quantiques

Francheteau, Anaïs 18 December 2017 (has links)
L'introduction de la supraconductivité dans des structures de type MOSFET en silicium ouvre de nouvelles perspectives dans la recherche en physique. Dans cette thèse, on s'intéresse aux propriétés de transport électronique au sein d'un MOSFET fabriqué avec des sources et drains supraconducteurs. Afin de garantir la reproductibilité de ces dispositifs, il est important d'intégrer des matériaux supraconducteurs compatibles avec la technologie CMOS exploitant la technologie silicium qui a pour énorme avantage d'être véritablement fiable et mature. L'idée fondamentale est de réaliser un nouveau type de circuit supraconducteur avec une géométrie de type transistor dans lequel un supracourant non dissipatif circulant au sein du dispositif, de la source vers le drain, serait modulé par une tension de grille : un JOFET. Une perspective importante est la réalisation d'un qubit supraconducteur grâce à une technologie parfaitement reproductible et mature. Cependant, à très basse température et avec la diminution de la taille des dispositifs, deux phénomènes a priori antagonistes entrent en compétition, à savoir la supraconductivité qui implique un grand nombre d'électrons condensés dans le même état quantique macroscopique et l'interaction Coulombienne qui décrit des processus de transport à une particule. L'intérêt de l'étude est donc de réaliser de tels transistors afin de mieux comprendre comment ce genre de dispositif hybride peut s'adapter à des propriétés opposées. Dans cette thèse, j'ai étudié deux façons d'introduire la supraconductivité dans nos dispositifs. La première option est de réaliser des sources et drains en silicium rendus supraconducteurs par dopage en bore et recuit laser effectué grâce à des techniques de dopage hors-équilibre robustes et bien maîtrisées. Même si la supraconductivité du silicium très fortement dopé en bore est connue depuis 2006 et son état supraconducteur a été très bien caractérisé sur des couches bidimensionnelles, la supraconductivité du SOI, qui est le substrat initial à la base de certains transistors, n'a jamais encore été testée et étudiée. L'objectif est de pouvoir adapter ces techniques de dopage au SOI afin de le rendre supraconducteur et de pouvoir l'intégrer par la suite dans des dispositifs de type MOSFET. La seconde option considérée est la réalisation de source et drain à base de siliciures supraconducteurs tel que le PtSi. Ce siliciure est intéressant du point de vue de sa température critique relativement haute de 1K. D'un point de vue technologique, les MOSFETs à barrière Schottky présentant des contacts en PtSi supraconducteur ont été élaborés au CEA/LETI. Les mesures à très basse température au sein d'un cryostat à dilution ont mis en évidence cette compétition entre la supraconductivité et les effets d'interaction Coulombienne et ont également révélé la supraconductivité dans le MOSFET comportant des contacts en PtSi grâce notamment à l'observation du gap induit dans le dispositif. / Superconducting transport through a silicon MOSFET can open up many new possibilities ranging from fundamental research to industrial applications. In this thesis, we investigate the electric transport properties of a MOSFET built with superconducting source and drain contacts. Due to their advantages in terms of scalability and reproducibility, we want to integrate superconducting materials compatible with CMOS technology, thus exploiting the reliable and mature silicon technology. The idea is to realize a new type of superconducting circuits in a transistor geometry in which a non-dissipative supercurrent flowing through the device from source to drain will be modulated by a gate: a JOFET. One important outcome is the realization of superconducting qubits in a perfectly reproducible and mature technology. However, at low temperature and with the reduction of the size of the devices, two antagonistic phenomena appear. The dissipation-free transport of Cooper pairs competes with lossy single-particle processes due to Coulomb interactions. The goal is to understand how these two conflicting properties manifest in such hybrid devices. In this thesis, I studied two different ways of introducing superconductivity in the devices. We deployed a high boron doping and a laser annealing provided by well-controlled out-of-equilibrium doping techniques to make the silicon superconducting. Although highly boron-doped silicon has been known to be superconducting since 2006, superconductivity of SOI, the basic brick of some transistors, was never tested before. We aim at adapting those doping techniques on SOI in order to make it superconducting and to integrate it in transistor-like devices. In a second project, we study source and drain contacts fabricated with superconducting silicides such as PtSi. Such Schottky barrier MOSFETs with superconducting PtSi contacts are elaborated at the CEA/LETI. Measurements at very low temperature revealed the competition between superconductivity and Coulomb interactions and moreover, have brought evidence of superconductivity in PtSi based silicon Schottky barrier MOSFET.

Page generated in 0.0559 seconds